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5.1 INTRODUCTION TO DEFINITE INTEGRALS AND DOUBLE INTEGRALS

Definite Integrals

The concept of definite integral

                             ( )b
a f x dx∫ …(1)

is physically the area under a curve y = f(x), (say), the
x-axis and the two ordinates x = a and x = b. It is
defined as the limit of the sum
                          f(x1)δx1 + f(x2)δx2 + … + f(xn)δxn

when n → ∞ and each of the lengths δx1, δx2, …, δxn
tends to zero.

Here δx1, δx2, …, δxn are n subdivisions into which the range of integration has been
divided and x1, x2, …, xn are the values of x lying respectively in the Ist, 2nd, …, nth
subintervals.

Double Integrals

A double integral is the counter part of the above
definition in two dimensions.

Let f(x, y) be a single valued and bounded function of
two independent variables x and y defined in a closed
region A in xy plane. Let A be divided into n elementary
areas δA1, δA2, …, δAn.

Let (xr, yr) be any point inside the rth elementary area
δAr.

Consider the sum

             ( ) ( ) ( ) ( )1 1 1 2 2 2
1

, , , ,
n

n n n r r r
r

f x y A f x y A f x y A f x y A
=

δ + δ + … + δ = δ∑ …(2)

Then the limit of the sum (2), if exists, as n → ∞ and each sub-elementary area approaches

to zero, is termed as ‘double integral’ of f(x, y) over the region A and expressed as ( ),
A

f x y dA∫ ∫ .

x a = x b = 

Y

X

A
y f x = ( )

O
Fig.  5.1
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Thus     ( ) ( )
1

0

, ,

r

n

r r r
n rA

A

f x y dA Lt f x y A
→∞ =

δ →

= δ∑∫ ∫ …(3)

Observations: Double integrals are of limited use if they are evaluated as the limit of the sum. However, they
are very useful for physical problems when they are evaluated by treating as successive single integrals.

Further just as the definite integral (1) can be interpreted as an area, similarly the double integrals (3) can be
interpreted as a volume (see Figs. 5.1 and 5.2).

5.2 EVALUATION OF DOUBLE INTEGRAL

Evaluation of double integral ( ),
R

f x y dx dy∫ ∫

is discussed under following three possible cases:

Case I: When the region R is bounded by two continuous
curves y = ψ (x) and y = φ (x) and the two lines (ordinates)
x = a and x = b.

In such a case, integration is first performed with
respect to y keeping x as a constant and then the
resulting integral is integrated within the limits x = a
and x = b.

Mathematically expressed as:

         ( ) ( )( )
( )( ), ,

x b
y x
y x

R x a
f x y dx dy f x y dy dx

=
= Ψ
= φ

=
=∫ ∫ ∫ ∫

Geometrically the process is shown in Fig. 5.3,
where integration is carried out from inner rectangle
(i.e., along the one edge of the ‘vertical strip PQ’ from
P to Q) to the outer rectangle.

Case 2: When the region R is bounded by two continuous
curves x = φ (y) and x = Ψ (y) and the two lines (abscissa)
y = a and y = b.

In such a case, integration is first performed with
respect to x. keeping y as a constant and then the
resulting integral is integrated between the two limits
y = a and y = b.

Mathematically expressed as:

         ( ) ( )
( )

( )
, ,

y b x y

R y a x y
f x y dx dy f x y dx dy

= =Ψ

= =θ

 
=  

 
∫ ∫ ∫ ∫

Geometrically the process is shown in Fig. 5.4,
where integration is carried out from inner rectangle
(i.e., along the one edge of the horizontal strip PQ
from P to Q) to the outer rectangle.

Case 3: When both pairs of limits are constants, the region
of integration is the rectangle ABCD (say).

Fig. 5.3
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In this case, it is immaterial whether f(x, y) is integrated first with respect to x or y, the
result is unaltered in both the cases (Fig. 5.5).

Observations: While calculating double integral, in either case, we proceed outwards from the innermost
integration and this concept can be generalized to repeated integrals with three or more variable also.

Example 1: Evaluate ( )
x+

∫ ∫
21 1

0
2 20

1
1 + +

dydx
x y

[Madras 2000; Rajasthan 2005].

Solution: Clearly, here y = f(x) varies from 0 to 21 x+
and finally x (as an independent variable) goes between 0
to 1.

                     ( )
21 1

2 20 0

1
1

x
I dy dx

x y

+ 
=  + + ∫ ∫

                               
21 1

2 20 0

1x
dy dx

a y

+ 
=  + ∫ ∫ , a2 = (1 + x2)

                               

211
1

0 0

1 tan
xy

dx
a a

+
− =   ∫

                               
1 2

1 1
2 20

1 1tan tan 0
1 1

x dx
x x

− − += −  + +∫
                                { }1 1

2
2 00

1 0 log 1
4 41

dx x x
x

π π   = − = + +  +∫
                                ( )log 1 2

4
π= +

Example 2: Evaluate ∫ ∫ 2 +3x ye dxdy over the triangle bounded by the lines x = 0, y = 0 and
x + y = 1.

Solution: Here the region of integration is the triangle OABO as the line x + y = 1 intersects
the axes at points (1, 0) and (0, 1). Thus, precisely the region R (say) can be expressed as:

                    0 ≤ x ≤ 1, 0 ≤ y ≤ 1 – x (Fig 5.7).

∴  
2 3x y

R
I e dxdy+= ∫ ∫

   
1 1

2 3

0 0

x
x ye dy dx

−
+ 

=   ∫ ∫

   
11

2 3

00

1
3

x
x ye dx

−
+ =   ∫

Fig. 5.6

Fig. 5.7
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             ( )1
3 2

0

1
3

x xe e dx−= −∫

                                
13 2

0

1
3 1 2

x xe e− = − − 

                                
2

2 31 1
3 2 2

ee e
 −    = + − +     

                                ( )( )23 21 12 3 1 2 1 1 .
6 6

e e e e =  − +  = + −   

Example 3: Evaluate the integral ( )∫ ∫ +
R

xy x y dxdy  over the area between the curves y = x2

and y = x.

Solution: We have y = x2 and y = x which implies
x2 – x = 0  i.e.  either x = 0  or  x = 1

Further, if x = 0 then y = 0; if x = 1 then y = 1. Means the
two curves intersect at points (0, 0), (1, 1).
∴ The region R of integration is doted and can be
expressed as: 0 ≤ x ≤ 1, x2 ≤ y ≤ x.

∴ ( ) ( )
2

1

0

x

xR
xy x y dxdy xy x y dy dx + = +  ∫ ∫ ∫ ∫

                                
2

2 31
2

0 2 3

x

x

y y
x x dx

   = +     
∫

                                 
1 4 4 6 7

0 2 3 2 3
x x x x dx

    = + − +        ∫
                                 

1
4 6 7

0

5 1 1
6 2 3

x x x dx = − −  ∫

                                

15 7 8

0

5 1 1 1 1 1 3
6 5 2 7 3 8 6 14 24 56

x x x = × − − = − − =  

Example 4: Evaluate ( )∫ ∫ x y dxdy
2

+  over the area bounded by the ellipse 
yx

a b

22

2 2+ = 1.

[UP Tech. 2004, 05; KUK, 2009]

Solution: For the given ellipse 
22

2 2
1

yx
a b

+ = , the region of integration can be considered as

O (0, 0)

P

Q
A(1, 1)

y x = y = x2

Y

X

Fig. 5.8
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bounded by the curves = − − = −
2 2

2 2
1 , 1

x x
y b y b

a a
 and finally x goes from – a to a

∴  ( ) ( )
2 2

2 2

1 /2 2 2

– – 1 /
2

a b x a

a b x a
I x y dxdy x y xy dy dx

−

−

 
= + = + +  ∫ ∫ ∫ ∫

                             ( )
2 2

2 2

1 /
2 2

1 /

a b x a

a b x a
I x y dy dx

−

− − −

 
= +  ∫ ∫

[Here 2 0xy dy =∫  as it has the same  integral value for both limits i.e., the term xy, which is

an odd function of y, on integration  gives a zero value.]

                              ( )
2 21 /

2 2

0
0

4
a

b x a
I x y dy dx

− 
= +  ∫ ∫

                              

2 21 /3
2

00

4
3

a b x a
y

I x y dx
− = +  ∫

⇒  

31
2 22 3 2

2
2 2

0

4 1 1
3

a
x b xI x b dx
a a

    = − + −         
∫

On putting x = a sinθ, dx = a cosθ dθ; we get

                     ( )
/2 3

2 2 3

0
4 sin cos cos cos

3
bI b a a d

π  = θ θ + θ θ θ  ∫

                               
/2 3

2 2 2 4

0
4 sin cos cos

3
bab a d

π  = θ θ + θ θ  ∫

Now using formula 
π

+ +   
      =

+ + 
  

∫
| |

/2

|0

1 11
2 2 2sin cos

2
2

p q

p q

x xdx
p q

and   
π

+ 
  π=

+ 
 

∫
|

/2

|0

1
2cos

22
2

n

n

x dx
n , (in particular when p = 0 , q = n)

       ( )
¬ ¬ ¬ ¬

¬ ¬

  
 + = +  ∫∫

22 2

3 3 5 1
2 2 2 24

32 3 2 3
bx y dxdy ab a

x a = – x a = 
P

Q

O
X

Y

Fig. 5.9
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2

2

3
2 2 2 24
2.2.1 3 2.2.1

bab a

 π π π π 
= + 

 
 

¬
  = π Q

1
2

                                
( )2 22 2

4
16 16 4

ab a ba bab
π +π π = + = 

 

ASSIGNMENT 1

1. Evaluate ( )( )
1 1

2 20 0 1 1

dx dy

x y− −∫ ∫
2. Evaluate ,

R
xy dx dy∫ ∫  where A is the domain bounded by the x-axis, ordinate x = 2a and

the curve x2 = 4ay.                  [M.D.U., 2000]

3. Evaluate ax bye dy dx+∫ ∫ , where R is the area of the triangle x = 0, y = 0, ax + by = 1 (a > 0,

b > 0). [Hint: See example 2]

4. Prove that ( ) ( )
2 1 1 2

1 3 3 1

y yxy e dy dx xy e dx dy+ = +∫ ∫ ∫ ∫ .

5. Show that ( ) ( )

1 1 1 1

3 3

0 0 0 0

x y x y
dx dy dy dx

x y x y

− −≠
+ +∫ ∫ ∫ ∫ .

6. Evaluate 
( )2 21

0 0

x ye x dx dy
∞ ∞

− +∫ ∫ [Hint: Put x2(1 + y2) = t, taking y as const.]

5.3 CHANGE OF ORDER OF INTEGRATION IN DOUBLE INTEGRALS

The concept of change of order of integration evolved to help in handling typical integrals
occurring in evaluation of double integrals.

When the limits of given integral ( )( )
( ) ,b y x

a y x f x y dy dx=Ψ
=φ⋅∫ ∫  are clearly drawn and the region

of integration is demarcated, then we can well change the order of integration be performing
integration first with respect to x as a function of y (along the horizontal strip PQ from P to
Q) and then with respect to y from c to d.

Mathematically expressed as:

                             ( )
( )

( )
, .

d x y

c x y
I f x y dx dy

= Ψ

= φ
= ∫ ∫

Sometimes the demarcated region may have to be split into two-to-three parts (as the case
may be) for defining new limits for each region in the changed order.
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Example 5: Evaluate the integral 
21 1

2

0 0

x

y dydx
−

∫ ∫  by changing the order of integration.

[KUK, 2000; NIT Kurukshetra, 2010]

Solution: In the above integral, y on vertical strip (say PQ) varies as a function of x and then
the strip slides between x = 0 to x = 1.

Here y = 0 is the x-axis and 21y x= −  i.e., x2 + y2 = 1 is the circle.
In the changed order, the strip becomes P’Q’, P’ resting on the curve x = 0, Q’ on the circle

21x y= −  and finally the strip P’Q’ sliding between y = 0 to y = 1.

∴           

211
2

0 0

y

I y dx dy
− 

=  
 

∫ ∫

                             [ ] 21
12

0
0

yI y x dy−= ∫

                             ( )
1 1

2 2 2

0
1I y y dx= −∫

Substitute y = sin θ, so that dy = cos θ d θ and θ varies from 0 to 2
π .

                             
2

2 2

0
sin cosI d

π

= θ θ θ∫

                             
( ) ( )2 1 2 1

4 2 2 16
I

− ⋅ − π π= =
⋅

2

0

( 1)( 3) ( 1)( 3)
sin cos ,

( )( 2) 2
p p p q q

d
p q p q

π
− − … − − π θ θ θ = × + + − ……


∫Q  only if both p and q are + ve even integers]

Example 6: Evaluate 2

4 2

0
4

a ax

x
a

dydx∫ ∫  by changing the order of integration.

[M.D.U. 2000; PTU, 2009]

Solution: In the given integral, over the vertical
strip PQ (say), if y changes as a function of x such

that P lies on the curve 
2

4
xy

a
=  and Q lies on the

curve 2y ax=  and finally the strip slides between
x = 0 to x = 4a.

Here the curve 
2

4
xy
a

= i.e. x2 = 4ay is a parabola

with
 y = 0 implying x = 0

                             y = 4a implying x = ± 4a

O

P

Q

P´ Q´

X

Y (4 , 4 )a a
y ax2 = 4

x ay2 = 4

A

x a = 4

Fig. 5.11







x = 1

y = 0

Q´

Q

P´

P

Y

X

x = 0

Fig. 5.10



Engineering Mathematics through Applications362

i.e., it passes through (0, 0) (4a, 4a), (– 4a, 4a).

Likewise, the curve 2y ax=   or  y2 = 4ax is also a parabola with

                             x = 0  ⇒  y = 0 and x = 4a  ⇒  y = ± 4a

i.e., it passes through (0, 0), (4a, 4a), (4a, – 4a).
Clearly the two curves are bounded at (0, 0) and (4a, 4a).

∴ On changing the order of integration over the strip P’Q’, x changes as a function of y
such that P’ lies on the curve y2 = 4ax and Q’ lies on the curve x2 = 4ay and finally P’Q’ slides
between y = 0 to y = 4a.

whence                 2

4 2

0
4

a x ay

yx
a

I dx dy
=

=

 
=  

 ∫ ∫

            [ ] 2

4 2

0
4

a ay

y
a

x dy= ∫

   
24

0
2

4

a y
ay dy

a
 

= −  ∫

                      ( ) ( )

4
3

3 32 3
2

0

4 12 4 43 12 3 12
2

a

y y aa a a
a a

 
 = − = − 
  

                      
2 2 232 16 16 .

3 3 3
a a a= − =

Example 7: Evaluate ( )
x

a a

x
a

x y dxdy2 2

0
+∫ ∫  by changing the order of integration.

Solution: In the given integral ( )/ 2 2
0 /
a x a

x a x a dx dy+∫ ∫ , y varies along vertical strip PQ as a
function of x and finally x as an independent variable varies from x = 0 to x = a.

Here y = x/a i.e. x = ay is a straight line and /y x a= , i.e.
x = ay2 is a parabola.
For x = ay;  x = 0  ⇒  y = 0 and x = a  ⇒  y = 1.

Means the straight line passes through (0, 0), (a, 1).
For x = ay2;  x = 0 ⇒ y = 0 and x = a ⇒ y = ± 1.

Means the parabola passes through (0, 0), (a, 1), (a, – 1),.
Further, the two curves x = ay and x = ay2 intersect at common

points (0, 0) and (a, 1).
On changing the order of integration,

( ) ( )
2

/ 1
2 2 2 2

0 / 0

a x a y x ay

x a y x ay
x y dxdy x y dxdy

= =

= =

 
+ = +  ∫ ∫ ∫ ∫

    (at P’)

x a = 

X

Y

(0, 0)
O y = 0P

Q
P´

Q´

y = 1

= /y x a

Fig. 5.12
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2

1 3
2

0 3

ay

ay

xI xy dy = +  ∫

                                
( ) ( )

3
1 32 2 2 2

0

1.
3 3

ay
ay y ay ay y dy

     = + − + ⋅        
∫

                        
1 3 3

3 6 4

0 3 3
a aa y y ay dy

  = + − −    ∫

                                

14 7 53 3

03 4 3 7 5
y y aya aa

  = + − −    

                                
3 3

3 4 3 7 4 5
a a a a    = − + −      × × 

                                ( )3
25 7

28 20 140
a a a a= + = + .

Example 8: Evaluate ∫ ∫
a a

ax

y
dy dx

y a x

2

4 2 20 –
.          [SVTU, 2006]

Solution: In the above integral, y on the vertical strip (say PQ) varies as a function of x and
then the strip slides between x = 0 to x = a.

Here the curve y ax= i.e., y2 = ax is the parabola and the curve y = a is the straight line.
On the parabola, x = 0  ⇒  y = 0; x = a  ⇒  y = ± a i.e., the parabola passes through points

(0, 0), (a, a) and (a, – a).
On changing the order of integration,

          
( )

2

´

2

4 2 20 0
at P

ya x
a

x

y
I dx dy

y a x

=

=

 
 =
 −  

∫ ∫

                                

2
2

20 0 2
2

1
y

a
a y

dx dy
a y

x
a

 
=  

   −    

∫ ∫

                            

2
2

1
20

0

sin
y

a ay x dy
ya
a

− =   
     

∫
Fig. 5.13

O
(0, 0)

x 
= 

0

x-axis
y = 0

y a= 
( , )a a

P

Q

P´ Q´

x
a

 =
 

y-axis

( , – )a a
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2

1 1

0
sin 1 sin 0

a y
dy

a
− −=  −  ∫

                           
2 3 2

0 02 2 3 6

aa y y ady
a a

π π π= = =∫ .

Example 9: Change the order of integration of 
1

0 2

2-x

x
xy dy dx∫ ∫  and hence evaluate the same.

[KUK, 2002; Cochin, 2005; PTU, 2005; UP Tech, 2005; SVTU, 2007]

Solution: In the given integral 
− 

  ∫ ∫
2

1 2

0

,
x

x
xydy dx  on the vertical strip PQ(say), y varies as a

function of x and finally x as an independent variable,
varies from 0 to 1.

Here the curve y = x2 is a parabola with
                         y = 0 implying x = 0

                         y = 1 implying x = ±1
i.e., it passes through (0, 0), (1, 1), (– 1, 1).

Likewise, the curve y = 2 – x is straight line
with

           

0 2
1 1
2 0

y x
y x
y x

= ⇒ = = ⇒ = 
= ⇒ = 

i.e. it passes though (1, 1), (2, 0) and (0, 2)
On changing the order integration, the area OABO is divided into two parts OACO and

ABCA. In the area OACO, on the strip P’Q’, x changes as a function of y from x = 0 to x y= .
Finally y goes from y = 0 to y = 1.

Likewise in the area ABCA, over the strip p”Q”, x changes as a function of y from x = 0 to
x = 2 – y and finally the strip P”Q” slides between y = 1 to y = 2.

∴
−   

+     
∫ ∫ ∫ ∫

21 2

0 0 1 0

y y

xy dx dy xy dx dy

                            

1 2 22 2

0 00 1
2 2

y y
x xy dy y dy

−   
= +   

  ∫ ∫

                            
( )221 2

0 1

2
2 2

y yy
dy dy

−
= +∫ ∫

                            
23 4

2

1

41 1 2
6 2 3 4

y y
y

 = + − +  

                         
1 5 3 .
6 24 8

I = + =







x = 0 
x = 1

y = 0 (2, 0)
X

Y

O
P

Q

P´ Q´

P´́ Q´́

B(0, 2) y = 2

(1, 1)
y = 1

y x = 2

C A

y x = 2 –  

Fig. 5.14
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Example 10: Evaluate ∫ ∫
x

x

x dydx
x y

21 2–

2 20 +
 by changing order of integration.

[KUK, 2000; MDU, 2003; JNTU, 2005; NIT Kurukshetra, 2008]

Soluton: Clearly over the strip PQ,  y varies as a
function of x such that P lies on the curve y = x and Q
lies on the curve 22y x= −  and PQ slides between
ordinates x = 0 and x = 1.

The curves are y = x, a straight line and 22y x= − ,
i.e. x2 + y2 = 2, a circle.

The common points of intersection of the two are
(0, 0) and (1, 1).

On changing the order of integration, the same
region ONMO is divided into two parts ONLO and
LNML with horizontal strips P’Q’ and P”Q” sliding

between y = 0 to y = 1 and y = 1 to 2y =  respecti-

vely.

whence                 
21 2 2

2 2 2 20 0 1 0

y yx xI dx dy dx dy
x y x y

−
= +

+ +∫ ∫ ∫ ∫

Now the exp. ( )
1

2 2 2
2 2

x d x y
x y dx

= +
+

∴            ( ) ( )
221 11 2

2 2 2 22 2
0 00 1

y y

I x y dy x y dy
−   

= + + +      ∫ ∫

                             ( ) ( )
221 11 2

2 2 2 22 2
0 00 1

y y

I x y dy x y dy
−

   
= + + +      ∫ ∫

                               ( ) ( )
1 22 2

0 0

12 1 2 2 1
2 2 2
y y

y
 = − + − = −  

Example 11: Evaluate ∫ ∫ dy dx
2 2

2 2

–

–

a a+ a y

a� a y0
 by changing the order of integration.

Solution: Given 
= = + −

= = − −

 
  ∫ ∫

2 2

2 2

y a x a a y

y o x a a y
dx dy

Clearly in the region under consideration, strip PQ is horizontal with point P lying on the

curve 2 2x a a y= − −  and point Q lying on the curve 2 2x a a y= + −  and finally this strip
slides between two abscissa y = 0 and y = a as shown in Fig 5.16.

O P

Q
Q´́

P´́

P´ Q´

N (1, 1)

y x = 

Y

= 2y

y = 1

y = 0

x y2 +  = 22

x = 1

x = 0

M

X

L

Fig. 5.15
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Now, for changing the order of integration, the
region of integration under consideration is same but
this time the strip is P’Q’ (vertical) which is a function
of x with extremities P’ and Q’ at y = 0 and

22y ax x= −  respectively and slides between x = 0
and x = 2a.

Thus                  
− 

=  
 

∫ ∫
22 2

0 0

a ax x

I dy dx
−

=   ∫
222

0 0

ax xa

y dx

                            = − = −∫ ∫
2 2

2

0 0
2 2

a a

ax x dx x a x dx

Take         2 sinx a= θ  so that dx = 4asinθ  cosθ dθ,

Also,     For x = 0, θ = 0 and for x = 2a, 
2
πθ =

Therefore,         
2

2

0
2 sin 2 2 sin 4 sin cosI a a a a d

π

= θ ⋅ − θ ⋅ θ ⋅ θ θ∫

                                
2

2 2 2

0
8 sin cosa d

π

= θ θ θ∫
( )( )

( )
2

2 2 1 2 1
8

4 4 2 2 2
aa

− − π π= ⋅ =
−

2

0

( 1)( 3) ( 1)( 3)
using sin cos ,

( )( 2) 2
p q p p q q

d
p q p q

π
− − … − − … π θ θ θ =

 + + − ………………


∫

p and q both positive even integers





Example 12: Changing the order of integration, evaluate ( )+x y dx dy.
−

∫ ∫
43

0 1

y

[MDU, 2001; Delhi, 2002; Anna, 2003; VTU, 2005]

Solution: Clearly in the given form of integral, x
changes as a function of y (viz. x = f(y) and y as an
independent variable changes from 0 to 3.

Thus, the two curves are the straight line x = 1 and

the parabola, = −4x y  and the common area under
consideration is ABQCA.

For changing the order of integration, we need to
convert the horizontal strip PQ to a vertical strip P’Q’
over which y changes as a function of x and it slides for
values of x = 1 to x = 2 as shown in Fig. 5.17.

∴  ( )( ) 2
2 4242 2

1 10 02

xx y
I x y dy dx xy dx

−−   = + = +     ∫ ∫ ∫
Fig. 5.17

O A

P Q

Y

X
P´

Q'

C(1, 3)
y = 3

B y = 0

(2, 0)

Fig. 5.16

x a = 2

O

P Q

C

A B
(0, 0)

(2 , 0)a

x 
=

 0

x ax + y  = 222

( , 0)a
P'

Q'

X

Y
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                                ( ) ( )222
2

1

4
4

2

x
x x dx

 −
 = − +
  

∫

                                ( )
2 4

2 2

1
4 8 4

2
xx x x dx

  = − + + −    ∫

                      
24 5

2 3

1

42 8
4 10 3
x xx x x = − + + −  

                                ( ) ( ) ( ) ( ) ( )2 2 4 4 5 5 3 31 1 42 2 1 2 1 8 2 1 2 1 2 1
4 10 3

= − − − + − + − − −

                                
15 31 28 2416 8 .
4 10 3 60

= − + + − =

Example 13: Evaluate ( ) ( )2 2log + > 0x y dx dy a
−

∫ ∫
a

a y2 2
2

0 0

 changing the order of integration.

[MDU, 2001]

Solution: Over the strip PQ (say), x changes as a function of y such that P lies on the curve

x = y and Q lies on the curve 2 2x a y= −  and

the strip PQ slides between y = 0 to .
2

ay =

Here the curves, x = y is a straight line

and  
0 0

2 2

x y
a ax y

= ⇒ = 
= ⇒ = 

i.e. it passes through (0, 0) and ,
2 2

a a 
  

Also 2 2x a y= − , i.e. x2 + y2 = a2 is a circle

with centre (0, 0) and radius a.

Thus, the two curves intersect at , .
2 2

a a 
  

On changing the order of integration, the same region OABO is divided into two parts

with vertical strips P’Q’ and P”Q” sliding between x = 0 to 
2

ax =  and 
2

ax =  to x = a

respectively.

Whence,      ( ) ( )
2 2/ 2

2 2 2 2

0 00 / 2
log log 1

a ax a x

a
I x y dy dx x y dy dx

−  = + ⋅ + + ⋅      ∫ ∫ ∫ ∫    …(1)

x = 0

O
(0, 0)

x a = 

A

y = 0

x y a2 +  = 2 2 y 
x

= 

X

Y

P Q

P´ P´́

Q´ Q´́

B
a a

2 2,
,

HG KJ

x
a

=
2

y
a

=
2

Fig. 5.18
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Now,

    ( ) ( )2 2 2 2
2 2

1log 1 log 2x y dy x y y y y dy
x y

 
+ = + ⋅ − ⋅ + ∫ ∫

Ist          IInd
      Function       Function

                                ( )
2 2 2

2 2
2 2

log 2
y x x

y x y dy
x y

 + −= + − + ∫

                                ( ) ( )
2 2 2

2 2
1log 2 2y x y y x dy

x y

 
= + − + 

+  
∫

                                ( )2 2 2 11log 2 2 tan
y

y x y y x
x x

−  = + − +     
…(2)

On using (2),

                            ( )
/ 2

2 2 1
1

0 0

log 2 2 tan
xa y

I y x y y x dx
x

−  = + − +     ∫
                                

/ 2
2 1

0
log 2 2 2 tan 1

a
x x x x dx−=  − +  ∫

                                
/ 2

2

0
log 2 2 2

4

a
x x x x dxπ = − +  ∫

                                
/ 2 / 2

2

0 0
log 2 2 1

4

a a
x x dx x dxπ = + − ∫ ∫

For first part, let 2x2 = t so that 4x dx = dt and limits are t = 0 and t = a2.

∴          
2 / 22

1
0 0

log 2 1
4 4 2

aa dt xI t π = ⋅ + − ∫

                                ( )
2 2

0

1 log 1 1
4 4 2

a at t π = − + −  , (By parts with logt = logt · 1)

    ( )2 2 2
2log 1

4 8 2
a a aa π= − + − …(3)

Agian, using (2),

                            ( )
2 2

2 2 1
2

/ 2 0

log 2 2 tan
a xa

a

y
I y x y y x dx

x

−
−  = + − +     ∫ …(4)

⇒     
2 2

2 2 2 2 2 1

/ 2
log 2 2 tan

a

a

a xa x a a x x dx
x

− −= − − − + 
 ∫
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Let x = a sinθ so that dx = a cos θ dθ and limits, 4
π

 to 2
π

∴        ( )
/2 2 2 2

2 2 2 2 1
2

/ 4

sinlog 2 sin 2 sin tan cos
sin

a aI a a a a a d
a

π
−

π

 − θ= − − θ + θ θ θ θ ∫

                    ( ) ( )
/2 /2

2 2 2 2 1

/4 /4
log 2 cos 2sin cos tan cota a d a d

π π
−

π π
= − θ θ + θ θ θ θ∫ ∫

                    ( ) ( )/2 /2
2 2 2 1

/4 /4

1 cos 2
log 2 sin 2 tan tan

2 2
a a d a d

π π
−

π π

+ θ  π = − θ + θ − θ θ   ∫ ∫

                    ( )
/2 /22

2 2

/4/4

sin 2log 2 sin 2
2 4 2
a a a d

π π

ππ

θ π   = − θ + + − θ θ θ     ∫
Ist IInd
Fun. Fun.

                          ( ) ( )
/2 /22

2 2

/4/4

1 cos 2 cos 2log 2 1
2 2 4 2 2 2 2
a a a d

π π

ππ

  π π π − θ − θ       = − − − + − θ − − θ             
∫

      ( )
/22 2

2
2

/4

1log 2 cos2
2 4 2 2
a aI a d

π

π

π = − − − θ θ  ∫ , 
cos2

2 2
π − θ   − θ     is zero for both

the limits)

 ( )
2 2 2 2 2

2 2 2

4
log log sin 2

8 4 2 4 4
a a a a aa a

π
π

 π π = − + − − θ  

 
2 2 2 2 2

2 2log log
8 4 2 4 4
a a a a aa a π π = − + − +   …(5)

On using results (3) and (5), we get
         I = I1 + I2

                    
2 2 2 2 2 2 2 2 2

2 2 2log log log
4 4 8 2 8 4 2 4 4
a a a a a a a a aa a a π   π π = − + − + − + − +      

 ( )
2 2 2

2 2log log 1
8 8 8
a a aa aπ π π= − = −

            ( )
2 12 log 1 log .

8 4 2
a aa a

2π π  = − = − 

Example 14: Evaluate by changing the order of integration. 
2– /x yxe dx dy

∞

∫ ∫
0 0

x

[VTU, 2004; UP Tech., 2005; SVTU, 2006; KUK, 2007; NIT Kurukshetra, 2007]
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Solution: We write 
( )

( )

( )

( ) 2 22

1

//

0 0 0 0

x x b y f x x
x yx y

x a y f x
xe dxdy xe dxdy

∞ = ∞ = = =
−−

= = = =
=∫ ∫ ∫ ∫

Here first integration is performed along the vertical strip with y as a function of x and
then x is bounded between x = 0 to x = ∞.

We need to change, x as a function of y and finally the limits of y. Thus the desired
geometry is as follows:

In this case, the strip PQ changes to P’Q’ with x as function of y, x1 = y and x2 = ∞ and
finally y varies from 0 to ∞.

Therefore Integtral

                              
2/

0

x y

y
I xe dxdy

∞ ∞
−= ∫ ∫

 Put x2 = t so that 2x dx = dt Further, for  
2, ,

,
x y t y

x t

= = 
= ∞ = ∞ 

I 
2

/

0
,

2
t y

y

dte dy
∞ ∞

−= ∫ ∫

                                 
2

/

0

1
2 1/

t y

y

e dy
y

∞
∞ − 

=  
 − 

∫
                                

0
0

2
yy

e dy
∞

− = − − ∫
   

0 2

yye
dy

−∞
= ∫     (By parts)

                               0 00

1 1
2 1 1

y ye ey dy
∞ ∞− ∞ −   = −    − −   ∫

   0

1
2

y yye e
∞− − = − − 

                                 ( ) ( )1 10 0 1 .
2 2

= − − =  

Example 15: Evaluate the integral ∫ ∫ .
–y

x

e dy dx
0 –y

∞ ∞

[NIT Jalandhar, 2004, 2005; VTU, 2007]

Soluton: In the given integral, integration is performed first
with respect to y (as a function of x along the vertical strip say
PQ, from P to Q) and then with respect to x from 0 to ∞.

On changing the order, of integration integration is
performed first along the horizontal strip P'Q' (x as a function
of y) from P' to Q' and finally this strip P'Q' slides between
the limits y = 0 to y = ∞.

Fig. 5.19

O P
X

Y

Q

P' Q'

y = 0
X

Y

O (0, 0)

x 
=

 0

P

Q x = ∞

P´ Q´

y
x

 = 

Fig. 5.20
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∴   
00

y yeI dx dy
y

∞ −  =   ∫ ∫
    ( )

0 0

y
ye y dy e dy

y

−∞ ∞
−= =∫ ∫

                                0
0

1 11
1

ye
e e

∞−

∞
 = = − −  −

                                = – 1(0 – 1) = 1

Example 16: Change the order of integration in the double integral ( )∫ ∫ .
a ax

ax x
f x y dx dy

2

2 2

0 2 -
,

[Rajasthan, 2006; KUK, 2004-05]

Solution: Clearly from the expressions given above,
the region of integration is described by a line which
starts from x = 0 and moving parallel to itself goes
over to x = 2a, and the extremities of the moving line
lie on the parts of the circle x2 + y2 – 2ax = 0 the parabola
y2 = 2ax in the first quadrant.

For change and of order of integration, we need to
consider the same region as describe by a line moving
parallel to x-axis instead of Y-axis.

In this way, the domain of integration is divided
into three sub-regions I, II, III to each of which
corresponds a double integral.

Thus, we get

 
− −

−
=∫ ∫ ∫ ∫

2 2

2 2

2 2

0 2 0 /2
( , ) ( , )

a ax a a a y

x ax y a
f x y dydx f x y dydx

Part I

 
+ −

+ +∫ ∫ ∫ ∫2 2 2

2 2 2

0 /2
( , ) ( , )

a a a a

a a y a y a
f x y dydx f x y dydx

 Part II  Part III

Example 17: Find the area bounded by the lines y
= sin x, y = cos x and x = 0.

Solution: See Fig 5.22.
Clearly the desired area is the doted portion

where along the strip PQ, P lies on the curve
y = sin x and Q lies on the curve y = cos x and finally
the strip slides between the ordinates x = 0 and

.
4

x π=

O
(0, 0)

( , 0)a y = 0

x
a

 =
 2

(  – )  + = x a y a22 2 

x 
=

 0

y a = 

P´́Q´

P´́´ Q´́ ´

Ι ΙΙ

y ax = 22 Q

PP´ Q´́

Y

y a = 2

X

ΙΙΙ

Fig. 5.21

y x = cos

X

Y

y = sinx

2ππO

P

3

2

ππ
2

x 
=

 0

1,
4 2

 π
  

Q

Fig. 5.22
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∴  
cos4

0 sin

x

R x
dx dy dy dx

π
 

=   ∫ ∫ ∫ ∫

                               ( )
4

0
cos sinx x dx

π

= −∫

                               ( ) /4
0sin cosx x π= +

                                
1 10 1
2 2

   = − + −       .

   ( )2 1= −

ASSIGNMENT 2

1. Change the order of integration 2 20

a a

y

x dxdy
x y+∫ ∫

2. Change the order integration in the integral ( )
−

−
∫ ∫

2 2

0
,

a ya

a
f x y dx dy

3. Change the order of integration in ( )
⋅ α −

α∫ ∫
2 2cos

0 tan
,

a a x

x
f x y dy dx

4. Change the order of integration in 
0

( , )
a lx

mx
f x y dxdy∫ ∫ [PTU, 2008]

5.4 EVALUATION OF DOUBLE INTEGRAL IN POLAR COORDINATES

To evaluate ( )
( )

( )

,
r

r
f r

θ=β =Ψ θ

θ=α =φ θ
θ∫ ∫  dr dθ, we first integrate with respect to r between the limits

r = φ(θ) to r = ψ(θ) keeping θ as a constant and then the
resulting expression is integrated with respect to θ from θ =
α to θ = β.

Geometrical Illustration: Let AB and CD be the two
continuous curves r = φ(θ) and r = Ψ(θ) bounded between
the lines θ = α and θ = β so that ABDC is the required
region of integration.

Let PQ be a radial strip of angular thickness δθ when OP
makes an angle θ with the initial line.

Here ( )( )
( ) ,r

r f r dr=Ψ θ
=φ θ θ∫  refers to the integration with

respect to r along the radial strip PQ and then integration
with respect to θ means rotation of this strip PQ from AC to CD.

Fig. 5.23

A

B

C

D

P

Q

θ
β

 =
 

θ
α = 

δθ

r = ( )φ θ

r = ( )Ψ θ

O
θ = 0θ

θ
π

=
2
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Example 18: Evaluate ∫∫ r dr dsinθ θ  over the cardiod r = a (1 – cosθθθθθ) above the initial line.

Solution: The region of integration under consideration is the cardiod r = a(1 – cos θ) above
the initial line.

In the cardiod     r = a(1 – cos θ);  for

   

0, 0,

, ,
2
, 2

r

r a

r a

θ = = 
πθ = = 
θ = π = 

As clear from the geometry along the radial strip OP, r (as a function of θ) varies from
r = 0 to r = a(1 – cos θ) and then this strip slides from θ = 0 to θ = π for covering the area above
the initial line.

Hence

                             
(1 cos )

0 0
sin

r a

I r dr d
= − θπ  

= θ θ  ∫ ∫

                                
( )1 cos2

0 0

sin
2

a
r d

− θπ  
= θ θ 

 
∫

                                ( )
2 2

0
1 cos sin

2
a d

π
= − θ θ θ∫

    
( )32

0

1 cos
2 3
a

π − θ
=  

  
, ( ) ( ) ( )1

´
1

n
n

f x
f x f x dx

n

+ 
= + ∫Q

                                ( ) ( ) [ ]
2 2 23 41 cos 1 cos0 8 0 .

6 6 3
a a a = − π − − = − = 

Example 19: Show that 
3

2 2sin =
3
ar dr dθ θ

R
∫ ∫ , where R is the semi circle r = 2a cosθθθθθ above

the initial line.

Solution: The region R of integration is the semi-circle
r = 2a cosθ above the initial line.

For the circle     r = 2a cosθ, θ = 0 ⇒ r = 2a

0
2

rπθ = ⇒ =

Otherwise also,     r = 2a cosθ ⇒ r2 = 2arcosθ
                                         x2 + y2 = 2ax

                      (x2 – 2ax + a2) + y2 = a2

                         (x – a)2 + (y – 0)2 = a2

Fig. 5.24

(2 , )a π
C

P

B
O

θ π = /2

A a( , /2)π

θ = 0θ π = 

(0, 0)

θ







Fig. 5.25

(0, 0) O
( , 0)a

(2 , 0)a

θ = 0

r a = 2  cosθ

θ π = /2

θ
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i.e., it is the circle with centre (a, 0) and radius r = a

Hence the desired area 

π
θ

θ θ∫ ∫
2 cos2

2

0 0
sin

a

r dr d

                                
2 cos2

2

0 0
sin

a

r dr d

π
θ 

= θ θ  ∫ ∫

                                
2 cos/2 3

0 0

sin
3

a
r d

θπ  
= θ θ 

 ∫

                                ( )
/2 3 3

0

1 2 cos sin
3

a d
π−= θ θ θ∫

                                
π − θ=   

/2
3 4

0

8 cos

3 4

a
, using 

1
( )

( ) '( )
1

n
n f x

f x f x dx
n

+

=
+∫

   =
32

.
3

a

Example 20: Evaluate ∫ ∫ r dr d
a r2 2+

θ  over one loop of the lemniscate r2 = a2 cos2θθθθθ.

[KUK, 2000; MDU, 2006]

Solution: The lemniscate is bounded for r = 0 implying 
4
πθ = ±  and maximum value of r is a.

See Fig. 5.26, in one complete loop, r varies from 0 to cos 2r a= θ  and the radial strip

slides between .  to  
4 4
π πθ = −

Hence the desired area

                            A ( )
/ 4

1
2

cos2

2 2/4 0

a r dr d
a r

π θ

− π
= θ

+∫ ∫

                                ( )1
2

/4 cos 2
2 2

/4 0

a
d a r dr d

π θ

−π

 
= + θ  ∫ ∫

                                ( )1
2

cos2/4
2 2

/4 0

a
a r d

θπ

− π
= + θ∫

                                ( )π

− π

 = + θ − θ  ∫
1

2
/4

2 2

/4
cos2a a a d

                                ( )
/4

/4
2 cos 1a d

π

−π
= θ − θ∫

O
θ

π
 = – /4

θ = 0

θ
π

 = /4

P( , )r θ

Fig. 5.26
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                                ( )
/4

0
2 2 cos 1a d

π
= θ − θ∫

                                ( ) /4

0
2 2 sina

π = θ − θ  

                                
1 .2 2 2 1
2 4 4

a a π π = − = −    

Example 21: Evaluate ∫ ∫ r dr d3 θ , over the area included between the circles r = 2a cosθθθθθ and

r = 2b cosθθθθθ (b < a).                                                                                                [KUK, 2004]

Solution: Given r = 2a cosθ  or  r2 = 2a r cosθ
      x2 + y2 = 2ax

         (x + a)2 + (y – 0)2 = a2

i.e this curve represents the circle with centre (a, 0) and radius a.
Likewise, r = 2b cosθ represents the circle with centre (b, 0) and radius b.
We need to calculate the area bounded between the two circles, where over the radial

strip PQ, r varies from circle r = 2b cosθ to r = 2a cosθ and finally θ varies from  to .
2 2
π π−

Thus, the given integral 

π
θ

π θ−

θ = θ∫ ∫ ∫ ∫
2 cos2

3 3

2 cos
2

a

R b
r dr d r dr d

                                
2 cos/2 4

/2 2 cos4

a

b

r d
θπ

− π θ

 = θ  ∫
                                 ( ) ( )

/2 44

/2

1 2 cos 2 cos
4

a b d
π

− π
 = θ − θ θ ∫

Fig 5. 27

θ
P

2b 2a

r = 2  cosa θ

O
(0, 0)

r b = 2  cosθ

Q

θ
π

=
2

                                ( ) 2
4 4 4

2

4 cosa b d

π

π−

= − θ θ∫

                                ( ) 2
4 4 4

0
8 cosa b d

π

= − θ θ∫

                                ( )4 4 3 18
4 2 2

a b ⋅ π= −
⋅

                                ( )4 43 .
2

a b= π −

Particular Case: When r = 2cosθ and r = 4cosθ i.e., a = 2 and b = 1, then

                             ( ) ( )4 4 4 43 3 452 1 units
2 2 2

I a b π= π − = π − = .
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ASSIGNMENT 3

1. Evaluate sinr dr dθ θ∫ ∫  over the area of the caridod r = a(1 + cosθ) above the initial line.

( )π + θ = θ θ  ∫ ∫
1 cos

0 0
 sin

a
I r dr dHint :

2. Evaluate 3r dr dθ∫ ∫ , over the area included between the circles r = 2a cosθ and r = 2b cosθ
(b > a).                                                                                                       [Madras, 2006]

π
= θ

π = θ−

   = θ∫ ∫   
 

2 cos2
3

2 cos
2

  
r b

r a

I r dr dHint :  (See Fig. 5.27 with a and b interchanged)

3. Find by double integration, the area lying inside the cardiod r = a(1 + cosθ) and outside
the parabola r(1 + cosθ) = a.                                                 [NIT Kurukshetra, 2008]

π + θ

+ θ

  
 θ     

∫ ∫
/2 (1 cos )

0
1 cos

2
a

a rdr dHint :

5.5 CHANGE OF ORDER OF INTERGRATION IN DOUBLE INTEGRAL IN POLAR

        COORDINATES

In the integral ( )( )
( ) ,r

r f r dr dθ=β =Ψ θ
θ=α =φ θ θ θ∫ ∫ , interation is first performed with respect to r along a

‘radial strip’ and then this trip slides between two values of θ = α to θ = β.
In the changed order, integration is first performed with respect to θ (as a function of r

along a ‘circular arc’) keeping r constant and then integrate the resulting integral with respect
to r between two values r = a to r = b (say)

Mathematically expressed as

                       ( )( )
( ) ( )( )

( ), ,r r b r
r r a f rf r dr d I f r d drθ=β =Ψ θ = θ=η

θ=α =φ θ = θ=θ θ = = θ θ∫ ∫ ∫ ∫

Example 22: Change the order of integration in the integral ( )∫ ∫
a f r dr d/2 2 cos

0 0 ,π θ θ θ

Solution: Here, integration is first performed with
respect to r (as a function of θ) along a radial strip
OP (say) from r = 0 to r = 2a cos θ and finally this

radial strip slides between θ = 0 to 2
πθ = .

Curve                r = 2a cosθ  ⇒  r2 = 2a rcosθ
⇒            x2 + y2 = 2ax  ⇒  (x – a)2 + y2 = a2

i.e., it is circle with centre (a, 0) and radius a.
On changing the order of integration, we have to

first integrate with respect to θ (as a function of r) along
Fig. 5.28

Q ( , 0)a
θ

P
R

O
(0, 0)

(2 , 0)a
θ = 0

x a = 2

πθ =
2 r = 2a cos  or θ −θ = cos r

a
1

2
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the ‘circular strip’ QR (say) with pt. Q on the curve θ = 0 and pt. R on the curve 1cos
2
r
a

−θ =

and finally r varies from 0 to 2a.

∴           ( ) ( )
1cos2 cos 2 22

0 0 0 0

, ,

r
a a a

I f r dr d f r d dr

−π
θ  

 = θ θ = θ θ  ∫ ∫ ∫ ∫

Example 23: Sketch the region of integration ( )
/2

2log a

,
4ae

ra
f r r dr d

π
θ θ

π

∫ ∫  and change the order

of integration.

Solution: Double integral ( )
/ 4 /2

0 2 log
,

ae

r
a

f r r dr d
π π

θ θ∫ ∫  is identical to 
2

1

( )

( )
( , ) ,

f rr

r f r
f r rdrd

θ==β

=α θ=
θ θ∫ ∫  whence

integration is first performed with respect to θ as a function of r i.e., θ = f(r) along the

‘circular strip’ PQ (say) with point P on the curve 2log r
a

θ =  and point Q on the curve

2
πθ =  and finally this strip slides between between r = a to r = aeπ/4. (See Fig. 5.29).

The curve 2log  implies log
2

r r
a a

θθ = =

      /2 re
a

θ = or r = aeθ/2

Now on changing the order, the integration is first performed with respect to r as a
function of θ viz. r = f(θ) along the ‘radial strip’ PQ (say) and finally this strip slides between

θ = 0 to .
2
πθ =  (Fig. 5.30).

  = 0θ
O

P

M

Q

L

θ = 2log /r a

r ae = θ/2

θ π = /2

r ae= π/4

r a = 

or

                

P

Q

O

B

( , 0)a θ = 0

r a = 

A

r ae = θ/2

( , /2)a π

δθ

θ

C ae( , /2)π/4 π

         Fig. 5.29                                                                         Fig. 5.30

∴                     ( )
/2/2

0
,

r ae

r a
I f r r dr d

θπ =

θ= =

 
= θ θ  ∫ ∫
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5.6. AREA ENCLOSED BY PLANE CURVES

1. Cartesian Coordinates: Consider the area bounded
by the two continuous curves
y = φ(x) and y = Ψ(x) and the two ordinates x = a, x =
b (Fig. 5.31).

Now divide this area into vertical strips each of
width δx.

Let R(x, y) and S(x + δx, y + δy) be the two
neigbouring points, then the area of the elementary
shaded portion (i.e., small rectangle) = δxδy

But all the such small rectangles on this strip PQ
are of the same width δx and y changes as a function
of x from y = φ(x) to y = Ψ(x)

∴ The area of the strip 
( )

( )
( )
( )

0 0

x
x

xy y x
PQ Lt x y x Lt dy x dy

Ψ Ψ
φδ → δ → φ

= δ δ = δ = δ∑ ∑ ∫

Now on adding such strips from x = a, we
get the desired area ABCD,

 
( )( ) ( ) ( )

( ) ( )0 ( ) ( )

xbx x b x
x a xy x a x

Lt x dy dx dy dxdy
ΨΨ Ψ Ψ

φ φδ → φ φ
δ = =∑ ∫ ∫ ∫ ∫ ∫

Likewise taking horizontal strip P’Q’ (say)
as shown, the area ABCD is given by

                      ( )
( )y b x y

y a x y dx dy
= =Ψ
= =φ∫ ∫

2 Polar Coordinates: Let R be the region
enclosed by a polar curve with P(r, θ) and Q(r +
δr, θ + δθ) as two neighbouring points in it.

Let PP’QQ’ be the circular area with radii OP
and OQ equal to r and r + δr respectively.

Here the area of the curvilinear rectangle is
approximately

   = PP’ · PQ’ = δr · rsin δθ = δr ⋅ rδθ = r δr δθ.
If the whole region R is divided into such small

curvilinear rectangles then the limit of the sum
Σrδrδθ taken over R is the area A enclosed by the
curve.
i.e.,          

0
0

r R
A Lt r r rdr d

δ →
δθ→

= δ δθ = θ∑ ∫ ∫

Example 24: Find by double integration, the area lying between the curves y = 2 – x2 and
y = x.

Solution: The given curve y = 2 – x2 is a parabola.

A
P

B

C
Q

D

Y

X
O

δx

δy

x a = x b = (0, 0)

R

S

Fig. 5.31

y a = 

y b = 

Y

X

A B

C D

P Q

x y = ( )Ψ

x y = ( )φ

O

δx

δy

Fig. 5.32

O X
θ = 0θ

P

Q

P´

Q´
rδθ

δr

δθ

Fig. 5.33
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where in                  

0 0
1 1
2 2
1 1
2 2

x y
x y
x y

x y
x y

= ⇒ = 
= ⇒ =
= ⇒ = − 
= − ⇒ =
= − ⇒ = − 

i.e., it passes through points (0, 2), (1, 1), (2, – 2),
(– 1, 1), (– 2, – 2).

Likewise, the curve y = x is a straight line

where                   

0 0
1 1

2 2

y x
y x
y x

= ⇒ = = ⇒ = 
= − ⇒ = − 

i.e., it passes through (0, 0), (1, 1), (– 2, – 2)

Now for the two curves y = x and y = 2 – x2 to
intersect, x = 2 – x2  or  x2 + x – 2 = 0 i.e.,
x = 1, –2 which in turn implies y = 1, –2
respectively.

Thus, the two curves intersect at (1, 1) and
(–2, –2),

Clearly, the area need to be required is ABCDA.

∴ ( )
21 2 1

2

2 2
2

x

x
A dy dx x x dx

−

− −

 
= = − −  

∫ ∫ ∫

    

13 2

2

92  units.
3 2 2
x xx

−

 = − − =  

Example 25: Find by double integration, the area lying between the parabola y = 4x – x2

and the line y = x.                                                                                       [KUK, 2001]

Solution: For the given curve y = 4x – x2;

              

0 0
1 2
2 4
3 3
4 0

x y
x y
x y
x y
x y

= ⇒ = 
= ⇒ =
= ⇒ = 
= ⇒ =
= ⇒ = 

i.e. it passes through the points (0, 0), (1, 2), (3, 3) and
(4, 0).

Likewise, the curve y = x passes through (0, 0) and
(3, 3), and hence, (0, 0) and (3, 3) are the common points.

Otherwise also putting y = x into y = 4x – x2, we get
x = 4x – x2 ⇒ x = 0, 3.

Fig. 5.34

D(– 2, –2)
y = – 2

P

O
C

x =1

X

B(0, 2)
Q

y = 2 – x2

y
x

 =
 

A(1, 1)

Y

(0, 0)

Fig. 5.35

C(3, 3)

y
x

 =
 

(4, 0)
x = 3 X

Y

A

O

(0, 0)

x = 0

B(2, 4)

(1, 2)
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See Fig. 5.35, OABCO is the area bounded by the two curves y = x and y = 4x – x2

∴ Area      
23 4

0

x x

x
OABCO dy dx

−
= ∫ ∫

                                
23 4

0

x x

x
y dx

−=   ∫

   ( )
33 2 3

2

0 0

94 3  units
2 3 2
x xx x x dx  = − − = − =  ∫

Example 26: Calculate the area of the region bounded by the curves 
xy

x2
3=
+ 2  and 4 y = x2

[JNTU, 2005]

Solution: The curve 4y = x2 is a parabola
where  y = 0  ⇒  x = 0,

 y = 1  ⇒  x = ±2  
i.e., it passes through (–2, 1), (0, 0), (2, 1).

Likewise, for the curve 2
3

2
xy

x
=

+
                             y = 0 ⇒ x = 0

 y = 1 ⇒ x = 1, 2

                    x = –1 ⇒ y = –1

Hence it passes through points (0, 0), (1, 1), (2, 1), (–1, –1).

Also for the curve (x2 + 2) y = 3x, y = 0 (i.e. X-axis) is an asymptote.

For the points of intersection of the two curves 2
3

2
xy

x
=

+
 and 4y = x2

we write       
2

2
3

2 4
x x

x
=

+ or x2 (x2 + 2) = 12x

Then                 x = 0 ⇒ y = 0
  x = 2 ⇒ y = 1

i.e. (0, 0) and (2, 1) are the two points of intersection.

O
P

Q

A

x = 2

y
x

=
2

4

(2, 1)

X

Y

Fig. 5.36
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The area under consideration,

                    
2

2

32 2 2
2

20 0
4

3
2 4

xy
x

xy

x xA dy dx dx
x

=
+

=

   = = −   +  ∫ ∫ ∫

             ( )
23

2

0

3 log 2
2 12

xx = + −  

                                ( )
3
23 2 2log 6 log 2 log 3

2 3 3
= − − = − .

Example 27: Find by the double integration, the area lying inside the circle r = a sinθ θ θ θ θ and
outside the cardiod r = a(1 – cosθθθθθ).                               [KUK 2005; NIT Kurukshetra 2007]

Soluton: The area enclosed inside the circle r = asinθ and the cardiod r = a(1 – cosθ) is shown
as doted one.

For the radial strip PQ, r varies from r = a(1 – cosθ) to r = a sinθ and finally θ varies in

between 0 to .
2
π

For the circle r = a sinθ

                             

0 0

2
0

r

r a

r

θ = ⇒ = 
πθ = ⇒ = 
θ = π ⇒ = 

    Likewise for the cardiod r = a(1 – cosθ);

                              

0 0

2
2

r

r a

r a

θ = ⇒ = 
πθ = ⇒ = 
θ = π ⇒ = 

Thus, the two curves intersect at θ = 0 and .
2
πθ =

∴          

π
θ

− θ
= θ∫ ∫

sin2

0 (1 cos )

a

a
A rdrd

                                
( )

sin/2 2

0 1 cos2

a

a

r d
θπ

− θ
= θ∫

                                ( )
/2

2 2

0

1 sin 1 cos 2cos
2

d
π

 = θ − + θ − θ θ ∫
                                [ ]

/22
2 2

0
cos2 1 2cos , since (sin cos ) cos 2

2
a d

π
= − θ − + θ θ θ − θ = − θ∫

θ π = θ = 0θ

A

Q

O
(0, 0)

r a = (1 – cos )θ

r a  = sinθ

θ π =  /2

P

Fig. 5.37
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/22

2

0

sin 2 2 sin 1 .
2 2 4
a a

π− θ π   = − θ + θ = −    

Example 28: Calculate the area included between the curve r = a(secθθθθθ + cosθθθθθ) and its
asymptote r = a secθθθθθ.                                                                   [NIT Kurukshetra, 2007]

Solution: As the given crave r = a(secθ + cosθ) i.e., 
1 cos

cos
r a = + θ  θ  contains cosine terms

only and hence it is symmetrical about the initial axis.
Further, for θ = 0, r = 2a and, r goes on decreasing above and below the initial axis as θ

approaches to   and at  ,
2 2
π πθ =  r = ∞.

Clearly, the required area is the doted region in which r varies along the radial strip from

r = a secθ to r = a(secθ + cosθ) and finally strip slides between   to  .
2 2
π πθ = − θ =

∴         

π
θ+ θ

θ
= θ∫ ∫

(sec cos )2

0 sec
2

a

a
A r dr d

                                
( )sec cos/2 2

0 sec

2
2

a

a

r d
θ+ θπ

θ

 = θ  ∫

                                
2 2/2 2

2

0

1 cos 1
cos cos

a d
π   + θ  = − θ      θ θ  

∫
                                ( )

/2
2 2

0
cos 2a d

π
= θ + θ∫

    
( )/2

2

0

5 cos2
2

a d
π + θ

= θ∫
                                

/22 2

0

sin 2 55 .
2 2 4
a aπθ π = θ + =  

ASSIGNMENT 4

1. Show by double integration, the area bounded between the parabola y2 = 4ax and x2 =

4ay is 216 .
3

a                                                  [MDU, 2003; NIT Kurukshetra, 2010]

2. Using double integration, find the area enclosed by the curves, y2 = x3 and y = x.
[PTU, 2005]

Example 29: Find by double integration, the area of laminiscate r2 = a2cos2θθθθθ.
[Madras, 2000]

Solution: As the given curve r2 = a2 cos2θ contains cosine terms only and hence it is
symmetrical about the initial axis.

r a  = secθ

r  a = (sec  + cos )θ θ

Y

P

Q

X
θ

Fig. 5.38
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Further the curve lies wholly inside the circle r = a,
since the maximum value of |cos θ| is 1.

Also, no portion of the curve lies between

3  to  
4 4
π πθ = θ =  and the extended axis.

See the geometry, for one loop, the curve is

bounded between   to  
4 4
π πθ = −

∴     

π
= θ

π =−

= θ∫ ∫
2 cos 24

0
4

Area 2
r a

r
rdr d

                                
cos2/4 2

0 0

4
2

a
r d

θπ
= θ∫

                                
/4/4

2 2 2

0 0

sin 22 cos 2 2
2

a d a a
ππ θ = θ θ = =  ∫

5.7 CHANGE OF VARIABLE IN DOUBLE INTEGRAL

The concept of change of variable had evolved to facilitate the evaluation of some typical
integrals.

Case 1: General change from one set of variable (x, y) to another set of variables (u, v).

If it is desirable to change the variables in double integral ( ),
R

f x y dA∫ ∫  by making

x = φ(u, v) and y = Ψ(u, v), the expression dA (the elementary area δxδy in Rxy) in terms of u
and v is given by

                          
,

,
,

x y
dA J du dv

u v
 =   

,
0

,
x y

J
u v

  ≠  

J is the Jacobian (transformation coefficient) or functional determinant.

∴      ( ) ( ) ,
, ,

,R R

x y
f x y dx dy F u v J du dv

u v
 =   ∫ ∫ ∫ ∫

Case 2: From Cartesian to Polar Coordinates: In transforming to polar coordinates by means
of x = r cosθ and y = r sinθ,

           
cos sin,

sin cos,

x x
x y rJ y y r rr

r

∂ ∂
θ θ  ∂ ∂θ= =  ∂ ∂ − θ θ θ

∂ ∂θ

∴                  dA = r dr dθ and ( ) ( )
´

, ,
R R

f x y dx dy F r r dr d= θ θ∫ ∫ ∫ ∫

A

B

θ = 0

θ
π

 =
 

/4

θ π = /2

θ
π

 = 3
/4

θ
θ

O

Fig. 5.39
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Example 30: Evaluate ( )
R

x y dx dy
2

+∫ ∫  where R is the parallelogram in the xy plane with

vertices (1, 0), (3, 1), (2, 2), (0, 1) using the transformation u = x + y, v = x – 2y.
[KUK, 2000]

Solution: Rxy is the region bounded by the parallelogram ABCD in the xy plane which on
transformation becomes Rúv i.e., the region bounded by the rectangle PQRS, as shown in the
Figs. 5.40 and 5.41 respectively.

O
X

Y

D
(0, 1)

A (1, 0)

B (3, 1)

C (2, 2)

                                 (0, 0)

u 
=

 1

u 
= 

4

P (1, 1) Q (4, 1)

S (1, – 2)   (4, – 2)R

U

V

Fig. 5.40     Fig. 5.41

With            }2
u x y
v x y

= +
= − , A (1, 0) transforms to  }1 0 1

1 0 1
u
v

= + =
= − = i.e., P(1, 1)

B(3, 1) transforms to Q(4, 1)

C(2, 2) transforms to R(4, – 2)

D(0, 1) transforms to S(1, – 2)

and            
( )
( )

, 1
, 3

x x
x y u vJ y yu v

u v

∂ ∂
∂ ∂ ∂= = −∂ ∂∂

∂ ∂

Hence the given integral 2 1
3

R

u dudv∫ ∫

    [ ]
4 1 4 12 2

21 2 1

1 1
3 3

u dudv v u du−−
= =∫ ∫ ∫

                                ( ) 4 2
1

1 1 2
3

u du= × + ∫

                             
43

1

63 21units
3 3
uI

 
= = = 
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Example 31: Using transformation x + y = u, y = uv, show that

                            ( ) .
yx

x ye dxdy e
1 1

0 0

1 12

 −  +  = −∫ ∫ [PTU, 2003]

Solution: Clearly y = f(x) represents curves y = 0 and y = 1 – x, and x which is an independent
variable changes from x = 0 to x = 1. Thus, the area OABO bounded
between the two curves y = 0 and x + y = 1 and the two ordinates
x = 0 and x = 1 is shown in Fig. 5.42.

On using transformation,
                             x + y = u ⇒ x = u(1 – v)
                             y = uv ⇒ y = uv

Now point O(0, 0) implies 0 = u(1 – v) …(1)
and                                         0 = uv …(2)

From (2), either u = 0 or v = 0 or both zero. From (1), we get
                             u = 0, v = 1

Hence (x, y) = (0, 0) transforms to (u, v) = (0, 0), (0, 1)

Point A(1, 0), implies 1 = u(1 – v) …(3)
and  0 = uv …(4)

From (4) either u = 0 or v = 0, If v = 0 then from (3) we have u = 1, again if u = 0, equation
(3) is inconsistent.

Hence, A(1, 0) transforms to (1, 0), i.e. itself.

From Point B(0, 1), we get 0 = u(1 – v) …(5)

    and                                      1 = vu …(6)

From (5), either u = 0 or v = 1
If u = 0, equation (6) becomes inconsistent.
If v = 1, the equation (6) gives u = 1.
Hence (0, 1) transform to (1, 1). See Fig. 5.43.
Hence

     
( )
( )

1 1 1 1

0 0 0 0

,
where

,
     

y
x

x y v x y
e dxdy ue du dv J u

u v

 
−  +  ∂

= = =
∂∫ ∫ ∫ ∫

    ( ) ( ) ( )
11 1 1 2

0 0 0 0

11 1 1
2 2

v uu e dv du u e du e e = = ⋅ − = − = −  ∫ ∫ ∫

Example 32: Evaluate the integral 
a y

y
a

x y
dxdy

x y
−
+∫ ∫ 2

2 24

2 2
0 4

 by transforming to polar coordinates.

Fig. 5.42

PO
(0, 0)

A
(1, 0)

x y +  = 1
B (0, 1)

x 
= 

0 

x 
=

 1

Y

Q

(0, 1)

O
(0, 0)

P´ A (1, 0)

B´ (1, 1)Q´O´́

Fig. 5.43
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Solution: Here the curves 
2

4
y

x
a

= or y2 = 4ax is

parabola passing through (0, 0), (4a, 4a).
Likewise the curve x = y is a straight line passing

through points (0, 0) (4a, 4a).
Hence the two curves intersect at (0, 0), (4a, 4a).

In the given form of the integral, x changes (as a

function of y) from 
2

4
y

x
a

=  to x = y and finally y as an

independent variable varies from y = 0 to y = 4a.
For transformation to polar coordinates, we take

                         x = r cosθ, y = r sinθ and 
( )
( )

,
,

x y
J r

r
∂

= =
∂ θ

The parabola y2 = 4ax implies r2sin2θ = 4a r cosθ so that r(as a function of θ) varies from

r = 0 to 
2

4 cos
sin
ar θ=

θ
 and θ varies from   to  

4 2
π πθ = θ =

Therefore, on transformation the integral becomes

          
( )2

4 cos 2 2 2/2
sin

2/4 0

cos sinar r
I r dr d

r

θπ =
θ

π

θ − θ
= ⋅ θ∫ ∫

                                
π θ

π

 = θ ⋅ θ  ∫
2

4 cos0
/2 2 sin

/4 0

cos 2
2

a

r d

                                ( )
/2 2 2

2
4/4

16 cos1 2sin
2 sin
a d

π

π

θ= − θ θ
θ∫

   
( )( )2 2/2

2
4/4

1 2 sin 1 sin
8

sin
a d

π

π

− θ − θ
= θ

θ∫

    
2 4/2

2
4/4

1 3sin 2sin
8

sin
a d

π

π

 − θ + θ = θ
θ∫

                                ( )
/2

2 2 2 2

/4
8 cosec 1 cot 3cosec 2a d

π

π
 = θ + θ − θ + θ ∫

                                
/2

2 2 2 2

/4
8 cot cosec 2cosec 2a d

π

π
=  θ θ − θ +  θ ∫

A a a (4 , 4 )
y a2 = 4

y
x

 =
 

θ = 0
B
(4 , 0)a

X

Y

P

θ
O

(0, 0)

θ
π

 =
 

/2

Fig. 5.44
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                                ( ) ( )
/2 /22 2 2 2

/4/4 4

8 cot cosec 2 cot 2a d
ππ π
πππ

 
= θ θ θ + θ + θ 

  ∫

Let cot θ = t so that – cosec2 θ dθ = dt.    Limits for , 1
4

, 0
2

t

t

π θ = = 
πθ = = 


                      ( )
0

2 2

1
8 2 0 1

2
a t dt π= − + − +  ∫

03

1

8 2
3 2
ta

 π= − − + 
  

                                2 58 .2 3a π = − 

Example 33: Evaluate the integral ( )/
/

a x a
x a x y+∫ ∫ 2 2

0
dxdy by changing to polar coordinates.

Solution: The above integral has already been discussed under change of order of integration
in cartesian co-ordinate system, Example 7.

For transforming any point P(x, y) of cartesian coordinate to polar coordinates P(r, θ), we

take x = r cosθ, y = r sinθ and 
( )
( )

,
.

,
x y

J r
r

∂
= =

∂ θ

The parabola 2 xy
a

=  implies 2 2 cossin rr
a

θθ = i.e., 2 cossin 0r r
a

θ θ − =  

⇒ either r = 0 or
2

cos
sin

r
a

θ=
θ

Limits, for the curve ,xy
a

=

                             1 1 1 1tan tan tan
y BA
x OB a

− − −θ = = =

and for the curve  
xy
a

=

                             1 0tan
2a

− πθ = =

Here r (as a function of θ) varies from 0 to 2
cos
sina

θ
θ

and θ changes from 1 1 .tan   to  
2a

− π Fig. 5.45

O
(0, 0)

B a ( , 0)

θ = 0

Y

X

A a ( , 1)

θ
π

 =
 

/2 P

θ

y
x
a

=

y
x
a

=
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Therefore, the integral,

                             ( )
/

2 2

0 /

x aa

x a
x y+∫ ∫

transforms to.   
2

1

cos/2
sin 3

1tan 0

a

a

I r dr d
−

θ π   θ
   

 
= θ   ∫ ∫

                             
2

1

cos/2
sin

cot ( ) 0

r
a

a
I dr d

−

θ π =  θ= θ∫ ∫
                                1

/2 4

4 4 2cot

1 cos
4 (sin )a

d
a−

π θ= θ
θ∫

⇒           ( )
1

2
4 2 2

4
cot

1 cot 1 cot cosec
4 a

I d
a −

π

= θ + θ θ θ∫

Let cot θ = t so that cosec2θ dθ = dt (– 1) and 1cot

0
2

a t a

t

−θ = ⇒ = 
π θ = ⇒ = 

∴                     ( )( )
0

4 2
4

1 1
4 a

I t t dt
a

= + −∫

                              I 
 =  +  = +    ∫

5 7
4 6

4 4
0 0

1 1
5 74 4

aa t tt t dt
a a

                             
3

.
20 28
a aI  = +  

Example 34: Evaluate 
n

xy x y dxdy+∫ ∫ 2 2 2( )  over the positive quadrant of x2 + y2 = 4,

supposing n + 3 > 0.                                                                                      [SVTU, 2007]

Solution: The double integral is to be evaluated over the area enclosed by the positive
quadrant of the circle x2 + y2 = 4, whose centre is (0, 0) and radius 2.

Let x = r cosθ, y = r sinθ, so that x2 + y2 = r2 .
Therefore on transformation to polar co-ordinates,

                  
/2 2

0 0
cos sin ,

r
n

r
I r r r J dr d

θ=π =

θ= =
= θ θ θ∫ ∫

                    ( )
/2 2

3

0 0
sin cos ,nr dr d

π
+= θ θ θ∫ ∫  

( )
( )

 ∂
= = ∂ θ 

,
,

x y
J r

r

                    
2/2 4

0 0

sin cos
4

nr d
n

π + = θ θ θ  +∫ Fig. 5.46

O
X

P

Y

θ θ = 0

Circle  = 2rθ
π

=
2



Multiple Integrals and their Applications 389

                    
4 2

0

2 sin cos
4

n
d

n

π
+

= θ θ θ
+ ∫

                    ( )
/24 2

0

2 sin ,
4 2

n

n

π+ θ= ⋅
+  using ( ) ( ) ( )2

´
2

f x
f x f x dx =∫

                    ( ) ( )
32 , 3 0.
4

n
n

n

+
= + >

+

Example 35: Transform to cartesian coordinates and hence evaluate the 3

0 0
sin cos

a

r drd
π

θ θ θ∫ ∫ .

[NIT Kurukshetra, 2007]

Solution: Clearly the region of integration is the area enclosed by the circle r = 0, r = a
between θ = 0 to θ = π.

Here                     3

0 0
sin cos

a

I r dr d
π

= θ θ θ∫ ∫
                                

0 0
sin cos

a

r r r dr d
π

= θ ⋅ θ⋅ θ∫ ∫
On using transformation x = r cosθ, y = r sinθ,

                             
2 2

0

a y a x

a
I xy dx dy

= −

−
= ∫ ∫

                                
2 2

0

a a x

a
x y dy dx

−

−

 
=   ∫ ∫

                                

2 2
2

02

a x
a

a

y
x dx

−

−

 =   ∫

    ( )
−

= −∫ 2 21
2

a

a
x a x dx

As x and x3 both are odd functions, therefore net value on integration of the above integral
is zero.

i.e.            I ( )2 31
2

a

a
a x x dx

−
= −∫  = 0.

ASSIGNMENTS 5

Evaluate the following integrals by changing to polar coordinates:

(1)
2 2

2 2

0 0
( )

a a y
x y dxdy

−
+∫ ∫ (2)

2

2 20

a a

y

x dxdy
x y+∫ ∫

θ π =  
O

P

X

Y

θ = 0

Circle r = a
    or  +  = x y a2 2 2

θ

Fig. 5.47
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(3)
2 2

2 2

a a x

a a x
dxdy

−

− − −
∫ ∫ (4)

( )2 2

0 0

x ye dx dy
∞ ∞

− +∫ ∫        [MDU, 2001]

5.8 TRIPLE INTEGRAL (PHYSICAL SIGNIFICANCE)

The triple integral is defined in a manner entirely analogous to the definition of the double
integral.

Let F(x, y, z) be a function of three independent variables x, y, z defined at every point in
a region of space V bounded by the surface S. Divided V into n elementary volumes δV1, δV2,
…, δVn and let (xr, yr, zr) be any point inside the rth sub division δVr. Then, the limit of the
sum

                            ( )
1

, ,
n

r r r r
r

F x y z v
=

δ∑ , …(1)

if exists, as n → ∞ and δVr → 0 is called the
‘triple integral’ of R(x, y, z) over the region V, and
is denoted by

                  ( ), ,F x y z dV∫ ∫ ∫ …(2)

In order to express triple integral in the
‘integrated’ form, V is considered to be sub-
divided by planes parallel to the three coordinate
planes. The volume V may then be considered as
the sum of a number of vertical columns extending
from the lower surface say, z = f1(x, y) to the upper
surface say, z = f2(x, y) with base as the elementary
areas δAr over a region R in the xy-plance when all
the columns in V are taken.

On summing up the elementary cuboids in the
same vertical columns first and then taking the sum
for all the columns in V, it becomes

                            ( ), ,r r r r
r r

F x y z z A
 δ δ  

∑ ∑ …(3)

with the pt. (xr, yr, zr) in the rth cuboid over the element δAr.
When δAr and δz tend to zero, we can write (3) as

                     ( )( )
( )=

=
 
  ∫∫ 2

1

,
, , ,z f x y

z f x y
R

F x y z dz dA

Note: An ellipsoid, a rectangular parallelopiped and a tetrahedron are regular three dimensional regions.

5.9. EVALUATION OF TRIPLE INTEGRALS

For evaluation purpose, ( ), ,
V

F x y z dV∫ ∫ ∫ …(1)

is expressed as the repeated integral

Fig. 5.48

Z

O Y

X

Z f x y = ( , )2

R 

δAr

Z f x y = ( , )1
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                             ( )2 2 2

1 1 1
, ,x y z

x y z F x y z dzdy dx∫ ∫ ∫ …(2)

where in the order of integration depends upon the limits.
If the limits z1 and z2 be the functions of (x, y); y1 and y2 be the functions of x and x1, x2 be

constant, then

                             ( )
( )

( )

( )

( ) ==φ=

= =φ =

  
=      

∫ ∫ ∫
22

1 1

,

,
, ,

z f x yy xx b

x a y x z f x y
I F x y z dz dy dx …(3)

which shows that the first F(x, y, z) is integrated with respect to z keeping x and y constant
between the limits z = f1(x, y) to z = f2(x, y). The resultant which is a function of x, y is
integrated with respect to y keeping x constant between the limits y = f1(x) to y = f2(x).
Finally, the integrand is evaluated with respect to x between the limits x = a to x = b.

Note: This order can accordingly be changed depending upon the comfort of integration.

Example 36: Evaluate 
+

+ +∫ ∫ ∫ .
x ya x

x y ze dz dy dx
0 0 0

                                            [KUK, 2000, 2009]

Solution: On integrating first with respect to z, keeping x and y constants, we get

                             ( ) ( )
00 0

,
a x x y

x y zI e dy dx
++ + =  ∫ ∫ [Here (x + y) = a, (say), like some constant]

                                ( ) ( ) ( ) 0

00

a x
x y x y x ye e dydx+ + + + + = − ∫ ∫

                                ( ) ( )2

0 0

a x
x y x ye e dydx+ + = − ∫ ∫

                             
2 2

0 0

,
2 1

xa x y x ye e dx
+ + = −  ∫  (Integrating with respect to y, keeping x constant)

                               
4 2 2

0 2 1 2 1

a x x x xe e e e dx
    = − − −        ∫

On integrating with respect to x,

                                
4 2 2

08 2 4 1

ax x x xe e e e = − − +  

                                
4 2 2 1 1 1 1
8 2 4 8 2 4

a a a
ae e e e   = − − + − − − +     

⇒           
4

23 3 .
8 4 8

a
a aeI e e = − + −  

Example 37: Evaluate 
−π θ

θ∫ ∫ ∫
/ sin

.
a r

a
a

r dr d dz

2 2

2

0 0 0

[VTU, 2007; NIT Kurukshetra, 2007, 2010]
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Solution: On integrating with respect to z first keeping r and θ constants, we get

                             ( )
2 2

/2 sin

00 0

a ra
aI z r dr d
−π θ

= θ∫ ∫
                                ( )/2 sin

2 2

0 0

1 a
a r r dr d

a

π θ
= − θ∫ ∫

                                
sin/2 2 4

2

0 0

1 ,
2 4

a
r ra d

a

θπ  = − θ  ∫ (On integrating with respect to r)

                                
/2 2 2 2 4 4

0

1 sin sin
2 4

a a a d
a

π  ⋅ θ θ= − θ  ∫

   
3 2

2 4

0
2sin sin

4
a d

π

=  θ − θ θ ∫

    
3 1 3 12 ,

4 2 2 4 2 2
a π ⋅ π = ⋅ ⋅ − ⋅ ⋅ 

  
/2

0

( 1) ( 3)
sin ;only if  is even

( ) ( 2) 2
p p p

x dx p
p p

π − ⋅ − … π = ×  ⋅ − …∫

∴                          
3 33 51

4 2 8 64
a aI  π π = − =    

Example 38: Evaluate log∫ ∫ ∫
log

.
xe y e

z dz dy dx
1 0 1

[MDU, 2005; KUK, 2004, 05]

Solution: 
log

1 0 1
log

xe y e
zdz dxdy

 
  ∫ ∫ ∫

[Here z = f(x, y) with z1 = 1 and z2 = ex + 0y

                                 
log

1 0 1
log 1

xe y e
z dzdx dy

 = ⋅  ∫ ∫ ∫
       Ist         IInd
       fun.      fun.

                                
log

1 0 1

1log
xee y

z z z dz dx dy
z

 = × −  ∫ ∫ ∫

                                ( ) ( )
log

11 0
log 1 log1

xe y ex xe e z dx dy = − ⋅ − ∫ ∫
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                                ( )
log

1 0
1

ye
x xxe e dx dy  = − −   ∫ ∫

                                ( )( )log

1 0
1 1

e y
xx e dx dy=  − +  ∫ ∫

                                
log

01
2

e yx xxe e x dy=  − +  ∫
                                ( ) ( )

1
1 log 2 1

e
y y y dy = + ⋅ + − ∫

        I II
 function     function

On integrating by parts,

                             
2 2 2

1
1 1

21log 2
2 2 2

e e
ey y y

I y y y dy y
y

       = × + − ⋅ + + −            
∫

                                ( ) ( )
2

2

1

1(log ) log 1 1 1 2 2 1
2 2 2

e yee e dy e e
     = + − ⋅ + − + + − − −        ∫

                                
22

2

1

2 1
2 4

e
ye e y e e

   = + − + + − −    

                                
2 2

21 1 2 1
2 4 4
e ee e e e = + − − + + + − −  

                                ( )21 1 8 3 .
4

e e = + −  

Example 39: Evaluate ( )
1

1 0
.

z x z

x z
x y z dx dy dz

+

− −
+ +∫ ∫ ∫ [JNTU, 2000; Cochin, 2005]

Solution: Integrating first with respect to y, keeping x and z constant,

                             
21

1 0 2

x zz

x z

y
I xy yz dx dz

+

− −

  = + +    ∫ ∫

                                ( )1 2
2

1 0
4 2zx z dx dz

−

 = +  ∫ ∫

                                
1 2

2

1 0

4 2
2

z
xz z x dz

−

 = + ⋅ ⋅  ∫
                                

1 2
2

1
4 2

2
zz z z dz

−

 = ⋅ + ⋅  ∫

                                

11 4
3

1 1

4 4 0
4
zz dz

− −
= = =∫
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ASSIGNMENT 6

Evaluate the following integrals:

(1)
1 2 2

2

0 0 1
x yzdxdydz∫ ∫ ∫ (2) ( )2 2 2

a b c

a b c
x y z dxdydz

− − −
+ +∫ ∫ ∫                      [VTU, 2000]

(3)
24 2 4

0 0 0

z z x
dy dx dz

−

∫ ∫ ∫ (4)
log 2 log

0 0 0

x x y
x y ze dzdydx

+
+ +∫ ∫ ∫ [NIT Kurukshetra, 2008]

5.10 VOLUME AS A DOUBLE INTEGRAL

(Geometrical Interpretation of the Double Integral)
One of the most obvious use of double integral is the determination of volume of solids

viz. ‘volume between two surfaces’.
If f(x, y) is a continuous and single valued function

defined over the region R in the xy-plane with z = f(x, y)
as the equation of the surface. Let ¬  be the closed curve
which encloses R. Clearly, the surface R (viz. z = f(x, y))
is the orthogonal projection of S(viz z = F(x, y)) in the
xy-plane.

Divided R into elementary rectangles of area δxδy
by drawing lines parallel to the axis of x and y. On each
of these rectangles errect prisms having their lengths
parallel to the z-axis. The volume of each such prism is
zδx δy.

(Division of R is performed with the lines x = xi (i = 1,
2, …, m) and y = yj(j = 1, 2, …, n). Through each line
x = xi, pass a plane parallel to yz-plane, and through
each line y = yj, pass a plance parallel to xz-plane. The
rectangle ∆Rij whose area is ∆Aij = ∆xi ∆yj will be the
base of a rectangle prism of height f(xij, hij), whose
volume is approximately equal to the volume between the surface and the xy-plane x = xi – 1,

x = xi ; y = yi – 1 y = yi. Then ( )
1
1

,
n

ij ij i j
i
j

f x y
=
=

ξ η ∆ ⋅ ∆∑
 
gives an approximate

 
value for volume V of

the prism of the cylinder enclosed between z = f(x, y) and the xy-plane.
The volume V is the limit of the sum of each elementary volume z δxδy.

∴                     ( )
0
0

,
x R Ry

V Lt z x y z dx dy f x y dA
δ →
δ →

= δ δ = =∑ ∑ ∫ ∫ ∫ ∫

Note: In cyllidrical co-ordinates, the equation of the surface becomes z = f(r, θ), elementary area dA = r dr dθ

and volume ( )= θ θ∫ ∫ ,
R

f r r dr d

X

O Y

Z

CS

R

δ δR, y 

δx

Fig. 5.49
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Problems on Volume of a Solid with the Help of Double Integral

Example 40: Find the volume of the tetrahedron bounded by the plane + + =yx z

a b c
1  and

the co-ordinate planes.     [Burdwan, 2003]

Solution: Given, ( )1 , 1
y yx z xz f x y c

a b c a b
 + + = ⇒ = = − −   …(1)

If f(x, y) is a continuous and single valued function over the region R (see Fig. 5. 50) in the
xy plane, then z = f(x, y) is the equation of the surface. Let C be the closed curve that is the
boundary of R. Using R as a base, construct a cylinder having elements parallel to the z-axis.
This cylinder intersects z = f(x, y) in a curve Γ , whose projection on the xy-plane is C.

  

( , 0, 0)a

P Q

b

c

a

(0, , 0)b

X

Z

(0, 0, )c

Y

R

                        

R
C

Y

Z C x a y b f x y = (1– /  – / ) = ( , )

 Fig. 5.50                                                                    Fig. 5.51

The equation of the surface under which the region whose volume is required, may be

written in the form (1) i.e., 1 .
yxz c

a b
 = − −  

Hence the volume of the region 1
R R

yxadA c dx dy
a b

 = = − −  ∫ ∫ ∫ ∫
The equation of the inter-section of the given surface with xy-plane is

                  1
yx

a b
+ = …(2)

If the prisms are summed first in the y-direction they will be summed from y = 0 to the line

1 xy b
a

 = −  

Therefore,           
1

0 0
1

xa b
a yxV c dy dx

a b

 −    = − −  ∫ ∫

                                

( )1 /2

0
0

2

b x a
a xy y

c y dx
a b

−
 = − −  ∫
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2

20

1
2 2

a x xc b dx
a a

 = − +  ∫

                                
2 3

2
02 2 6

a
x x xcb

a a
 = − +  

                                
 = − + =  

2 3

2
.

2 2 66

a a a abc
bc

a a

Example 41: Prove that the volume enclosed between the cylinders x2 + y2 = 2ax and

z2 = 2ax is .a2128

15

Solution: Let V be required volume which is enclosed by the cylinder x2 + y2 = 2ax and the
paraboloid z2 = 2ax.

Only half of the volume is shown in Fig 5.52.

Now, it is evident from that 2z ax=  is to be evaluated
over the circle x2 + y2 = 2ax(with centre at (a, 0) and radius
a.

Here y varies from 2 22   to  2ax x ax x− − −  on the
circle x2 + y2 = 2ax and finally x varies from x = 0 to x = 2a

∴          [ ]
2

2

2 2

0 2
2

a ax x

ax x
V z dx dy

−

− −
= ∫ ∫  as z = f(x, y)

                                 
22 2

0 0
2 2 2

a ax x
ax dy dx

− 
= ⋅  ∫ ∫

                                
22 2

0 0
4 2

a ax x
ax dy dx

− 
=   ∫ ∫

                                 
2 22 2 2

00 0
4 2 4 2 2

aa ax x
ax y dx ax ax x dx

−= = −∫ ∫
                                

2

0
4 2 2

a
a x a x dx= −∫

Let x = 2a sin2θ, so that dx = 4a sinθ cosθ dθ. Further, for x = 0, θ = 0

       
π= θ = .2 ,
2

x a

∴          2 2

0
4 2 2 sin 2 cos 4 sin cosV a a a a d

π
= θ θ ⋅ θ θ θ∫

                                
23 3 2

0
64 sin cosa d

π
= θ θ θ∫

(2 , 0)a

( , 0)a
(0, 0)

Z ax2 = 2

X

Z

x y ax +  = 222

Fig. 5.52
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( )( ) ( )( )

( )( )
3

1 3 1 3
64 1, 3, 2

2

p p q q
a p q

p q p q

− − … − − …
= ⋅ = =

+ + − …

                               
( ) 3

3 3 1 1 128 .64
5 3 15

a
a

−
= =

⋅

Problems based on Volume as a Double Integral in Cylindrical Coordinates

Example 42: Find the volume bounded by the cylinder x2 + y2 = 4 and the hyperboloid
x2 + y2 – z2 = 1 .

Solution: In cartesian co-ordinates, the section of the given hyperboloid x2 + y2 – z2 = 1 in
the xy plane (z = 0) is the circle x2 + y2 = 1, where as at the top and at the bottom end (along
the z-axis i.e., 3z = ± ) it shares common boundary with the circle x2 + y2 = 4 (Fig. 5.53 and
5.54).

Here we need to calculate the volume bounded by the two bodies (i.e., the volume of
shaded portion of the geometry).

X

Y

Z

O
                

             

P

O

Q
x y +  = 422

(  = 1)r

(  = 2)r

x y +  = 122

Fig. 5.53                                                            Fig. 5.54

(Best example of this geometry is a solid damroo in a concentric long hollow drum.)
In cylindrical polar coordinates, we see that here r varies from r = 1 to r = 2 and θ varies

from 0 to 2π.

∴ ( )2 2 ,V zdxdy f r r dr d   = = θ θ      ∫∫ ∫∫

                                
2 2

2

0 1
2 1r rdr d

π = − θ  ∫ ∫ (³   x2 + y2 – z2 – 1 ⇒ 2 2 1z x y= + − )

                                ( )
32 2

2 2
0 1

12 1
3

d r d
π  

= − θ  ∫ ∫
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( )

23
22 2

0

1

1
2

3

r
d

π −
= θ∫

                                
π

= θ = π∫
2

0

.2 3 4 3d

Example 43: Find the volume bounded by the cylinder x2 + y2 = 4 and the planes y + z
= 4 and z = 0.                                      [KUK, 2000; MDU, 2002; Cochin, 2005; SVTU, 2007]

Solution: From Fig. 5.55, it is very clear that z = 4 – y is to be integrated over the circle x2 +
y2 = 4 in the xy-plane.

To cover the shaded portion, x varies from 2 24   to  4y y− − −  and y varies from – 2 to 2.
Hence the desired volume,

                             
2

2

2 4

2 4

y

y
V z dxdy

−

− − −
= ∫ ∫

   ( )
22 4

2 0
2 4

y
y dxdy

−

−
= −∫ ∫

                                ( )
242

2 0
2 4

y
y dx dy

−

−

 
= −   ∫ ∫

                                ( )
2

2

2
2 4 4y y dy

−
= − −∫

                                
2

2 2

2
2 4 4 4y y y dy

−
 = − − − ∫

                                
2

2

2
8 4 0y dy

−
= − −∫

(The second term vanishes as the integrand is an odd function)

                                
−

−

 −
= + = π 

  

2
2

1

2

4 4
8 sin 16 .

2 2 2

y y y

ASSIGNMENT 7

1. Find the volume enclosed by the coordinate planes and the portion of the plane
lx + my + nz = 1 lying in the first quadrant.

2. Obtain the volume bounded by the surface 1 1
yxz c

a b
  = − −        and the quadrant of

the elliptic cylinder 
22

2 2
1

yx
a b

+ =

[Hint: Use elliptic polar coordinates x = a rcosθ, y = brsinθ ]

X

O

Z

Y

Fig. 5.55
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5.11 VOLUME AS A TRIPLE INTEGRAL

Divide the given solid by planes parallel to the coordinate plane into rectangular
parallelopiped of elementary volume δxδyδz.

Then the total volume V is the limit of the sum of all elementary volume i.e.,

                            0
0
0

x
y
z

V Lt x y z dx dy dx
δ →
δ →
δ →

= δ δ δ =∑ ∑ ∑ ∫∫∫

Problems based on Volume as a Triple Integral in cartesian Coordinate System

Example 44: Find the volume common to the cylinders x2 + y2 = a2 and x2 + z2 = a2.

Solution: The sections of the cylinders x2 + y2 = a2 and x2 + z2 = a2 are the circles x2 + y2 = a2

and x2 + z2 = a2 in xy and xz plane respectively.
Here in the picture, one-eighth part of the required volume (covered in the 1st octant) is

shown.

Clearly, in the common region, z varies from 0 to 2 2a x−  i.e., 2 2 21 0a x y− − , and x and

y vary on the circle x2 + y2 = a2.
The required volume

∴       
2 2 2 2 2

2 2

1 1

0

0 0 0
8

y a x z a x ya

y z
V dz dy dx

= − = − −

= =
= ∫ ∫ ∫

                   ( )− −= ∫ ∫
2 2

2 2

00 0
8

a a x a xz dy dx

                   
2 2

2 2

0 0
8

a xa
a x dy dx

− 
= −  ∫ ∫

                   ( )
2 2

2 2

0 0
8

a xa
a x dy dx

− 
= −   ∫ ∫

                   ( )2 2 2 2

0
8 0

a
a x a x dx= − − −∫

( ) 3
2 2 2

0
0

8 8
3

a
a xa x dx a x

  = − = −     
∫

                   
 = − =  

3 3
3 16

8 .
3 3
a a

a

( , 0, 0)a x a = A

O
P Q

C

X

Y

Z

O´́ a
D

x O = 
O´

a

B

Fig. 5.56



Engineering Mathematics through Applications400

Example 45: Find the volume bounded by the xy plane, the cylinder x2 + y2 = 1 and the
plane x + y + z = 3.

Solution: Let V(x, y, z) be the desired volume enclosed laterally by the cylinder x2 +  y2 = 1
(in the xy-plane) and on the top, by the plane x + y + z = 3 (= a say).

Clearly, the limits of z are from 0 (on the
xy-plane) to z = (3 – x – y) and x and y vary on the
circle x2 + y2 = 1

∴         ( )
2

2

1 31

1 1 0
, ,

x x y

x
V x y z dzdy dx

− − −

− − −
= ∫ ∫ ∫

                                ( )( )− − −

− −
= ∫ ∫

2

2

1 1 3
01 1 1

x x y

x
z dy dx

                                ( )
2

2

11

1 1
3

x

x
x y dy dx

−

− − −

 
= − −  ∫ ∫

                               

2

2

121

1 1

3
2

x

x

y
y xy dx

−

− − −

 = − −  ∫

⇒  ( )1
2 2

1
6 1 2 1I x x x dx

−
= × − − −∫

On taking x = sinθ, we get dx = dθ; For 1,
2

For 1,
2

x

x

π = − θ = − 
π= θ = 


Thus,

                            ( )/2
2 2

/2
6 1 sin 2sin 1 sin cosV d

π

−π
= − θ − θ − θ θ θ∫

                                ( )/2
2 2

/2
6cos 2sin cos d

π

−π
= θ − θ θ θ∫

                                
/2 /2

2 2

0 /2
6 2 cos 2 sin cosd d

π π

−π
= × θ θ − θ θ θ∫ ∫

  Ist         IInd

                                

/23

/2

(2 1) cos 212 2 3 0 3
2 2 3 3

π

− π

− π θ= ⋅ + = π + × = π

Using    
( )( )

( )
/2

0

1 3
cos , only if is even

2 2
p p p

d p
p p

π − − … π θ θ = ×  − …∫  and

Fig. 5.57
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       ( ) ( ) ( )1

´
1

n
n f x

f x f x dx
n

+
=

+∫  for Ist and IInd integral respectively

Example 46: Find the volume bounded by the ellipsoid + + = .
yx z

a b c

22 2

2 2 2
1

[MDU, 2000; KUK, 2001; Kottayam, 2005; PTU, 2006]

Solution: Considering the symmetry, the desired volume is 8 times the volume of the ellipsoid
into the positive octant.

The ellipsoid cuts the XOY plane in the ellipse
22

2 2
1

yx
a b

+ =  and z = 0.

Therefore, the required volume lies between the
ellipsoid

                             
22

2 2
1

yxz c
a b

= − −

and the plane XOY (i.e., z = 0) and is bounded on the
sides by the planes x = 0 and y = 0

Hence,             
22 2

2 2 2
1 1

0 0 0
8

yx xa b c
a a bV dzdy dx

− − −
= ∫ ∫ ∫

                                

2

2
21 2

2 20 0
8 1

xa b
a yxc dy dx

a b

−
= − −∫ ∫

                        2 2

0 0
8

a c y dy dx
b

α = α −  ∫ ∫
2

2
taking 1 x

a b

   α− =    

                            

2 2 2
1

0
0

8 sin
2 2

a y y ycV dx
b

α

−
 α − α= + 

α  
∫

2
2 2 2 2 1Using formula  tan

2 2
x a xa x dx a x

a
− − = − +  ∫

                      
2

1

0
8 0 sin 1

2

ac dx
b

− α = +  ∫

                                
2 2

2 2
2 20 0

4 2 1 1
2

,
a ac c x xdx b dx b

b b a b
π π  = α = − α = −  ∫ ∫

            
3

2
0

12
3

a
xbc x

a
 = π −  

   = π4
.

3
abc

Fig. 5.58
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Example 47: Evaluate the integral 
− − −∫ ∫ ∫ dxdydz

a x y z2 2 2 2
 taken throughout the volume

of the sphere.                                                                                                [MDU, 2000]

Solution: Here for the given sphere x2 + y2 + z2 = a2, any of the three variables x, y, z can be

expressed in term of the other two, say 2 2 2 .z a x y= ± − −
In the xy-plane, the projection of the sphere is the circle x2 + y2 = a2.

Thus,  
2 2 2 2 2

2 2 2 20 0 0
8

a a x a x y dx dy dz
I

a x y z

− − −
=

− − −∫ ∫ ∫

                                
2 2 2 2 2

2 20 0 0
8

a a x a x y dz dy dx
z

− − −  
=   α −  ∫ ∫ ∫ , α2 = (a2 – x2 – y2)

                                
2 2

0

1

0 0
8 sin

a a x z dy dx
α−

−
  =     α  ∫ ∫

                                ( )
2 2

1 1

0 0
8 sin 1 sin 0

a a x
dy dx

−
− −

 
= −  ∫ ∫

                                
2 2

2 2

00 0 0
8 4

2

a a x a a x
dy dx y dx

− − π  = = π    ∫ ∫ ∫

                                 
2 2 2

2 2 1

0
0

4 4 sin
2 2

a
a x a x a xa x dx

a
− −= π − = π + 

 ∫

                                
2

4 0
2 2
a π = π +  

 I = π2a2.

Example 48: Evaluate ( )+ +∫ ∫ ∫ x y z dx dy dz  over the tetrahedron bounded by the planes
x = 0, y = 0, z = 0 and x + y + z = 1.

Solution: The integration is over the region R(shaded portion) bounded by the plane x = 0,
y = 0, z = 0 and the plane x + y + z = 1.

The area OAB, in xy plane is bounded by the lines x + y = 1, x = 0, y = 0
Hence for any pt. (x, y) within this triangle, z goes from xy plane to plane ABC (viz. the

surface of the tetrahedron) or in other words, z changes from z = 0 to z = 1 – x – y. Likewise
in plane xy, y as a function x varies from y = 0 to y = 1 – x and finally x varies from 0 to 1.

whence,                 ( )
( )over R

I x y z dx dy dz= + +∫ ∫ ∫

                                ( )
1 11

0 0 0

x x y
x y z dz dy dx

− − −  = + +    ∫ ∫ ∫

Fig. 5.60
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                                ( )
11 2

0 0 02

x ya x zx y z dy dx
− −−  = + +  ∫ ∫

                                ( )( ) ( )2
1

0 0

1
1

2

a x x y
x y x y dy dx

−  − −
 = + − − +
  

∫ ∫
                                ( )( )

1 1

0 0

1 1 1
2

x
x y x y dy dx

−
= − − + +∫ ∫

                                ( )
1 1 2

0 0

1 1
2

x
x y dy dx

−  = − + ∫ ∫

                                
( )

13
1

0
0

1
2 3

x
x y

y dx

−
 +
 = −
  

∫ ,

                                ( )
1 3

0

1 11
2 3 3

xx dx
  = − − −    ∫

                                
12 4

0

1 2
2 3 2 12

x xx = − +  

   
1 2 1 1 1
2 3 2 12 8

 = − + =  

ASSIGNMENT 8

1. Find the volume of the tetrahedron bounded by co-ordinate planes and the plane

1,
yx z

a b c
+ + =  by using triple integration                                                   [KUK, 2002]

2. Find the volume bounded by the paraboloid x2 + y2 = az, the cylinder x2 + y2 = 2ay and
the plane z = 0.

5.12. VOLUMES OF SOLIDS OF REVOLUTION AS A DOUBLE INTEGRAL

Let P(x, y) be any point in a region R enclosing an elementary
area dx dy around it. This elementary area on revolution
about x-axis form a ring of volume,
                           δV = π[(y + δy)2 – y2] δx = 2πyδxδy    …(1)

Hence the total volume of the solid formed by revolution
of this region R about x-axis is,

                            2
R

V y dx dy= π∫ ∫  …(2)

Similarly, if the same region is revolved about y-axis,
then the required volume becomes

                            2
R

V x dx dy= π∫ ∫ …(3)

Fig. 5.61
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Expressions for above volume in polar coordinates about the initial line and about the

pole are 
22 sin

R
r dr dπ θ θ∫ ∫  and 22 cos

R
r dr dπ θ θ∫ ∫  respectively.

Example 49: Find by double integration, the volume of the solid generated by revolving

the ellipse yx

a b
+ =

22

2 2
1  about y-axis.

Solution: As the ellipse 
22

2 2
1

yx
a b

+ =  is symmetrical about the

y-axis, the volume generated by the left and the right halves
overlap.

Hence we shall consider the revolution of the right-half ABD

for which x-varies from 0 to 
2

2
1

y
a

b
−  and y-varies from – b to  b.

∴                    
2 2

0
2

a b yb
b

b
V x dx dy

−

−
= π∫ ∫

                                ( )
2 2

2 2
2 2

2
0

2
2

a b yb bb

b b

x ady b y dy
b

−

− −

  π= π = −  ∫ ∫

                                   ( )
32 2

2 2 2
2 20

0

22
3

b
b ya ab y dy b y

b b
 π= π − = −  ∫

                                = π 24
.

3
a b

Example 50: The area bounded by the parabola y2 = 4x and the straight lines x = 1 and y
= 0, in the first quadrant is revolved about the line y = 2. Find by double integration the
volume of the solid generated.

Solution: Draw the standard parabola y2 = 4x to which
the straight line y = 2 meets in the point P(1, 2), Fig. 5.64.

Now the dotted portion i.e., the area enclosed by
parabola, the line x = 1 and y = 0 is revolved about the line
y = 2.
∴ The required volume,

                       ( )
21

0 0
2 2

x
V y dx dy= π −∫ ∫

                           ( )
221 1

0 00

2 2 2 4 2
2

x
y

y dx x x dx
 = π − = π −  ∫ ∫

                           
3

2

1
2

0

8 102
3 3

x x π = π − =  

A

B

C

D

Q P 

Y

X

Y´

X´

2 – y

O
y = 0

x = 1

P (1, 2)

y x2 = 4
y = 2

Fig. 5.64

Fig. 5.63
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Example 51: Calculate by double integration, the volume generated by the revolution of
the cardiod r = a(1 – cosθθθθθ) about its axis.                                                   [KUK, 2007, 2009]

Soluton: On considering the upper half of the cardiod, because due to symmetry the lower
half generates the same volume.

∴          
(1 cos )

2

0 0
2 sin

a
V r dr d

− θπ
= π θ θ∫ ∫

                                
( )1 cos3

0 0

2 sin
3

a
r d

− θπ
= π θ θ∫

                                ( )
3 3

0

2 1 cos sin
3
a d

ππ= − θ θ θ∫
                                

( )
π

− θπ π= =
4

3 3

0

1 cos2 8 .
3 4 3

a a

Example 52: By using double integral, show that volume generated by revolution of

cardiod r = a(1 + cosθθθθθ) about the initial line is aπ 38
3 .

Solution: The required volume

                            
(1 cos )

2

0 0
2 sin

a
r dr d

+ θπ
= π θ θ∫ ∫

                            
( )1 cos3

0 0

2 sin
3

a
r d

+ θπ  = π θ θ  ∫
                            ( )33

0
2 1 cos sina d

π
= π + θ θ θ∫

                            
( )43

0

1 cos2
3 4
a

π
 + θπ= − 
  

                            
3 4 32 2 8 .0

3 4 3
a aπ   π= − − =  

ASSIGNMENT 9

1. Find by double integration the volume of the solid generated by revolving the ellipse
22

2 2
1

yx
a b

+ =  about the X-axis.

2. Find the volume generated by revolving a quadrant of the circle x2 + y2 = a2, about its
diameter.

3. Find the volume generated by the revolution of the curve y2(2a – x) = x3, about its
asymptote through four right angles.

4. Find the volume of the solid obtained by the revolution of the leminiscate r2 = a2cos2θ
about the initial line.                                                                  [Jammu Univ., 2002]

Fig. 5.65

θ π = θ = 0
X
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5.13. CHANGE OF VARIABLE IN TRIPLE INTEGRAL

For transforming elementary area or the volume from one sets of coordinate to another, the
necessary role of ‘Jacobian’ or ‘functional determinant’ comes into picture.

(a) Triple Integral Under General Transformation

Here 
( , , ) '( , , )

( , , )
( , , ) ( , , )| | ; where ( 0)

( , , )R x y z R u v w

x y z
f x y z dx dy dz F u v w J du dvdw J

u v w
∂= = ≠
∂∫∫∫ ∫∫∫  …(1)

Since in the case of three variables u(x, y, z), v(x, y, z), w(x, y, z) be continuous together
with their first partial derivatives, the Jacobian of u, v, w with respect to x, y, z is
defined by

u v w
x x x

u v w
y y y

u v w
z z z

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

(b) Triple Integral in Cylindrical Coordinates

Here      ( ) ( )= θ θ∫ ∫ ∫ ∫ ∫ ∫
´

, , , ,
R R

f x y z dx dy dz F r z J dr d dz , where  |J| = r

The position of a point P in space in cylindrical coordinates is determined by the
three numbers r, θ, z where r and θ are polar co-ordinates of the projection of the point
P on the xy-plane and z is the z coordinate of P i.e., distance of the point (P) from the
xy-plane with the plus sign if the point (P) lies above the xy-plane, and minus sign if
below the xy-plane (Fig. 5.67).

O

y
X

Z

z

r

Q

P x y z( , , )

θ

Y                  O

X

Y

Z

∆z
∆θ

N

θ
Q R

M

P

∆r
r ∆θ

∆θ

Fig. 5.67 Fig. 5.68

In this case, divide the given three dimensional region R' (r, θ, z) into elementary
volumes by coordinate surfaces r = ri, θ = θj, z = zk (viz. half plane adjoining z-axis,
circular cylinder axis coincides with Z-zxis, planes perpenducular to z-axis). The
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curvilinear ‘prism’ shown in Fig. 5. 68 is a volume element of which elementary base
area is r ∆r∆θ and height ∆z, so that ∆v = r ∆r ∆θ ∆z.

Here θ is the angle between OQ and the positive x-axis, r is the distance OQ and z is
the distance QP. From the Fig. 5.62, it is evident that

                             x = r cosθ, y = r sinθ, z = z and so that,

                

cos sin 0, ,
sin cos 0

, , 0 0 1

x y z
J r r r

u v w

θ θ  = − θ θ =   …(2)

Hence, the triple integral of the function F(r, θ, z) over R´ becomes

                  ( )
( )´ , ,

, ,
R r z

V F r z r dr d dz
θ

= θ θ∫ ∫ ∫ …(3)

(c) Triple Integral in Spherical Polar Coordinates

Here           ( ) ( ), , , ,
R R

V f x y z dxdydz F r J drd d= = θ φ θ φ∫ ∫ ∫ ∫ ∫ ∫ , where |J| = r2sinθ

The position of a point P in space in spherical coordinates is determined by the
three variables r, θ, φ where r is the distance of the point (P) from the origin and so
called radius vector, θ is the angle between the radius vector on the xy-plane and the
x-axis to count from this axis in a positive sense viz. counter-clockwise.
For any point in space in spherical coordinates, we have
                    0 ≤ r ≤ ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.

Divide the region ‘R’ into elementary volumes ∆V by coordinate surfaces, r = constant
(sphere), θ = constant (conic surfaces with vertices at the origin), φ = constant (half
planes passing through the Z-axis ).

To within infinitesimal of higher order, the volume element ∆v may be considered
a parallelopiped with edges of length ∆r, r ∆θ, r sinθ ∆φ. Then the volume element
becomes ∆V = r2sinθ ∆r ∆θ ∆φ.

x

O

θ

φ
90°

A
Ly

X

Y

Z

z

θ

P x y z( , ,. )
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∆φ
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∆r
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∆φφ
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Y

z

∆θ

                           Fig. 5.69                                                           Fig. 5.70
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For calculation purpose, it is evident from the Fig. 5.69 that in triangles, OAL and
OPL,

                             x = OL cosφ = OP cos(90 – θ) . cosφ = r sinθ cosφ,

                             y = OL sinφ = OP sinθ . sinφ = r sinθ sinφ,

                              z = r cosθ.

Thus,           
( )
( )

2
sin cos sin sin cos, ,
cos cos cos sin sin sin

, , sin sin sin cos 0

x y z
J r r r r

r r r

θ φ θ φ θ∂
= = θ φ θ φ − θ = θ

∂ θ φ − θ φ θ φ

Problems Volume as a Triple Integral in Cylindrical Co-ordinates

Example 53: Find the volume intercepted between the paraboloid x2 + y2 = 2az and the
cylinder x2 + y2 – 2ax = 0.

Solution: Let V be required volume of the cylinder
x2 + y2 – 2ax = 0 intercepted by the paraboloid x2 + y2 = 2az.

Transforming the given system of equations to polar-
cylindrical co-ordinates.

Let 

cos
( , , ) ( , , )sin  sothat  

x r
V x y z V r zy r

z z

= θ = θ= θ
= 

By above substitution the equation of the paraboloid becomes

r2 = 2az  ⇒  
2

2
rz
a

= and the cylinder x2 + y2 = 2ax gives

r2 – 2ar cosθ = 0  ⇒  r(r – 2a cosθ) = 0 with r = 0 and
r = 2a cosθ.

Thus, it is clear from the Fig. 5.71 that z varies from 0 to 
2

2
r
a

 and r as a function of θ varies

from 0 to 2a cosθ with θ as limits 0 to 2π. Geometry clearly shows the volume covered under

the +ve octant only, i.e. 1 th
4

 of the full volume.

              
22 cos /2/2

( , , ) ( , , ) 0 0 0
' 4 , as| |

r a z r a

x y z r z r z
V V r dzdrd J r

= θ =θ=π

θ = =
= = θ =∫ ∫ ∫

                                [ ]
2/22 cos/2

0 0 0
4

r aa
r z rdr d

θπ  
= θ  ∫ ∫

                                
/2 2 cos 3

0 0
4

2

a r dr d
a

π θ = θ  ∫ ∫

                                

2 cos/2 4

0 0

14
2 4

a
r d

a

θπ
= θ∫

Fig. 5.71

x y az2 +  = 22
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x y ax2 +  – 2  = 02
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/2 4 4

4

0

1 24 cos
2 4

a d
a

π
= θ θ∫

   
( )( )3 3 4 1 4 3

2
4 2 2

a
− − π=

×

                                
33

2
aπ= .

Example 54: Find the volume of the region bounded by the paraboloid az = x2 + y2 and
the cylinder x2 + y2 = b2. Also find the integral in case when a = 2 and b = 2.

Solution: On using the cylindrical polar co-ordinates (r, θ, z) with x = r cosθ, y = r sinθ, so

that the equations of the cylinder and that of the paraboloid are r = b and 
2rz
a

=  respectively.

See Fig. 5.72, only one-fourth of the common volume is shown.

Hence in the common region, z varies from z = 0 to 
2rz
a

=  and r and θ varies on the circle

from 0 to b and 0 to 2
π

 respectively.

∴ The desired volume

                             
2//2

0 0 0
4

b r a
V rdrd dz

π
= θ∫ ∫ ∫

                                
2//2

0 0 0
4

b r a
rdr dz d

π   
= θ    ∫ ∫ ∫

                                
/2 2

0 0
4

b rr dr d
a

π   = θ    ∫ ∫

                                
/2 4

0 0

4
4

b
r d

a

π  
= θ 

 ∫

                                
/24 2

0

4
4 2
b b

a a

π π= × θ =

As a particular case, when a = 2, b = 2, then

                            
( )42

4
2 2

V
π

= = π
×

Problmes on Volume in Polar Spherical Co-ordinates

Example 55: Find the volume common to the sphere x2 + y2 + z2 = a2 and the cone x2 + y2 = z2

OR
Find the volume cut by the cone x2 + y2 = z2 from the sphere x2 + y2 + z2 = a2.

[NIT Kurukshetra, 2010]

Fig. 5.72
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Solution: For the given sphere, x2 + y2 + z2 = a2 and the cone x2 + y2 = z2, the centre of the
sphere is  (0, 0, 0) and the vertex of the cone is origin. Therefore, the volume common to the

two bodies is symmetrical about the plane z = 0, i.e. the required volume, 2V dxdydz= ∫ ∫ ∫

In spherical co-ordinates, we have 2
sin cos
sin sin ; sin
cos

x r
y r J r
z r

= θ φ= θ φ = θ
= θ 

Thus, x2 + y2 + z2 = a2  becomes  r2 = a2 i.e., r = a
and               x2 + y2 = z2  becomes  r2 sin2θ (cos2φ + sin2φ) = r2cos2θ
i.e.,                  sin2θ = cos2θ  i.e. θ = π/4.

Clearly, the volume shown in the figure (Fig. 5.73) is
one-fourth, i.e. in first quadrant only and, in the common
region,

                              

 varies from 0 to ,

 varies from 0 to ,
4

 varies from 0 to 
2

r a 
π θ 


π φ 


Hence the required volume,

                            
/4/2

2

0 0 0
2 4 sin

a
V r dr d d

ππ = θ θ φ  ∫ ∫ ∫
                                

/4/2
2

0 0 0
8 sin

a
r dr d d

ππ  = θ θ φ  ∫ ∫ ∫
                                

/2 /4 3

0 0 0

8 sin
3

a
r d d

π π  = θ θ φ  ∫ ∫
                                [ ]

/2 /43
00

8 cos
3

a d
π π= − θ φ∫

                                
/2

3

0

8 11
3 2

a d
π = − φ   ∫

    
34 11

3 2
a  π= −  

Alternately: In polar-cylindrical co-ordinates, intersection of the two curves x2 + y2 + z2 = a2

and x2 + y2 = z2 results in z2 + z2 = a2 or
2

2

2
az = .

Further, 
2 2

2 2 2 2 2

2 2
a ax y a z a+ = − = − =  ⇒ 

2
ar = , i.e. r varies from 0 to 

2
a

Hence,             ( )/ 22
2 2

0 0
2

a
V a r r r dr d

π
= − − θ∫ ∫

φ
O Y

X

Z

90°

x y z +  = 2 2 2

Fig. 5.73

x y z +  = 2 2 2

P

Q

X

Z

Y
θ

Fig. 5.74
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|³ P lies on the cone whereas Q lies on the sphere as a function of (r, θ)

   ( ) 2/ 2
2 2 2

0 0
2

a
r a r r d dr

π = − − θ  ∫ ∫

           ( ) 3 23/22 2

0

14
3 3

a

ra r = π − − −  
 ( ) ( ) ( )

1 1 3
2 2 2 2 2 22 2 2

1 1since 3
3 3

r a r r a r d a r
  − −− = − − = −    

                                
3 3 31 14

3 2 2 3 2 2 3
a a a = π − − +  

                                
34 11

3 2
a  π= −  

Example 56: By changing to shperical polar co-ordinate system, prove that

V
∫ ∫ ∫ πyx z dx dy dz abc

a b c

22 2

2 2 2
1 – – – =

4  where ( ) 
 
 

≤
yx zV x,y,z

a b c

22 2

2 2 2
= : + + 1

Solution: Taking ,

,

x u
a
y

v
b
z w
c

= 
= 

=


, so that 
22 2

2 2 2
1

yx z
a b c

+ + ≤ ⇒ u2 + v2 + w2 ≤ 1

Now transformation co-efficient, x x x
u v w
y y y

J
u v w
z z z
u v w

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂=
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

0 0
0 0
0 0

a
b abc

c
= =

∴                          V 
( )

22 2

2 2 2
, ,

1
V x y z

yx z dx dy dz
a b c

= − − −∫ ∫∫

                                ( )
( )2 2 2

´ , ,
1

V u v w
u v w abc du dv dw= − − −∫ ∫ ∫

To transform to polar spherical co-rodinate system, let
 

sin cos ,
sin sin ,
cos

u r
v r
w r

= θ φ = θ φ 
= θ 

Then       V(́u, v, w) = {(u, v, w): u2 + v2 + w2 ≤ 1, u ≥ 0, v ≥ 0, w ≥ 0} reduces to

                     V”(r, θ, φ) = {r2 ≤ 1 i.e., 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π}

∴    ( )
2 2 2

´ , ,
1

V u v w
u v w abc dudvdw= − − −∫ ∫ ∫
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( )

2

, ,
1

V r
abc r J dr d d

θ φ
= − θ φ∫ ∫ ∫

"

where |J| = r2sinθ

⇒                ( )
12

2 2
, , 0 0 0

” 1 sinrV abc r r dr d d
πφ= π

θ φ φ=

  = − θ θ φ    ∫ ∫ ∫
Now put r = sin t so that dr = cost dt  and for

 

0, 0,

1,
2

r t

r t

= = π = = 

∴     ( )
22

2

0 0 0

/

r, ,V" abc cost sin t cos t dt sin d d
  =     ∫ ∫ ∫

π ππ

θ φ θ θ φ

                                
( ) ( )
( )( )

2

0 0

2 1 2 1
sin

2 2 4 2 2
abc d d

π π  − ⋅ − π= θ θ φ  + −  ∫ ∫

                        
2

0 0

1 1 sin
4 2 2

abc d d
π π π = θ θ φ   ∫ ∫

                                [ ]
π ππ= − θ φ∫

2

00
cos

16
abc d

                                
2 2 2

0 0
2

16 8 4
.abc abc abcd d

π ππ π π= φ = φ =∫ ∫
Example 57: By change of variable in polar co-ordinate, prove that

           .π∫ ∫ ∫
x x y dz dy dx

x y z

2 2 21 1– 1– – 2

2 2 20 0 0
=

81 – – –

OR
Evaluate the integral being extended to octant of the sphere x2 + y2 + z2 = 1.

OR
Evaluate above integral by changing to polar spherical co-ordinate system.

Solution: Simple Evaluation:

                             
2 2 21 1 1

2 2 20 0 0 1

x x y dzI dx dy
x y z

− − −
=

− − −∫ ∫ ∫
Treating ( ) 2 22 2 2

1 1as  
1 a zx y z −− − −

                             

2 22 11 1
1

0 0 0
sin

x yx zI dx dy
a

− −−
−

 
=  

 ∫ ∫
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2 2
2

1
1 1

1
2 20 0

0

sin
1

x y
x zdx dy

x y

− −
−

−
 
 =
 − − 

∫ ∫ ,  as  2 21a x y= − −

                                
21 1

0 0
0

2

x
dx dy

− π = − ∫ ∫
                                ( )

21 1

002
x

y dx
−π  =  ∫

                                
1

2

0
1

2
x dxπ= −∫

                                

1
2

1

0

1 1 sin ,
2 2 2

x x x− π −= + 
 

2 2 2
2 2 1using sin

2 2
x a x a xa x dx

a
−−− = +∫

                                
210

2 2 2 8
π π π = + =  

By change of variable to polar spherical co-ordinates, the region of  integration

                            V =  {(x, y, z); x2 + y2 + z2 ≤ 1; x ≥ 0, z ≥ 0, y ≥ 0.}

becomes                I =  (r, θ, φ); r2 ≤ 1, i.e. 0 ≤ r ≤ 1, 0 ≤ }, 0
2 2
π πθ ≤ ≤ φ ≤

where                   

sin cos ,
sin sin ,
cos

x r
y r
z r

= θ φ = θ φ 
= θ 

Now                  
( )
( )

, ,
, ,

x y z
J

r
∂

=
∂ θ φ  = coefficient of transformation = r2sinθ.

whence             

2/2 /2 1

2 2 2 20 0 0

sin
1 1

V

dx dy dz r
dr d d

x y z r

π π θ
= θ φ

− − − −∫∫ ∫ ∫ ∫ ∫

                             
/2 /2 1 2

20 0 0
sin

1
rI d dr d

r

π π   = φ θ θ   − ∫ ∫ ∫
Let r = sin t so that dr = cos t dt. Further, when 0, 0,

1,
2

r t

r t

= = π = = 

∴                     
π π π

= φ θ θ ⋅∫ ∫ ∫
/2 /2 /2 2

0 0 0

sinsin cos
cos

tI d d t dt
t

    
/2 /2

0 0

1sin ;
2 2

d d
π π π = φ θ θ ⋅  ∫ ∫









Engineering Mathematics through Applications414

                                
/2 /2

0 0
sin

4
d d

π ππ= φ θ θ∫ ∫
                                ( )

/2/2

0 0

cos
4

d
πππ= φ − θ∫

                                
/2 2

0
.

4 8

ππ π= φ =

Example 58: Find the volume of the ellipsoid yx z
a b c

22 2

2 2 2
+ + = 1  by changing to polar co-

ordinates.                                                                                                            [PTU, 2007]

Solution: We discuss this problem under change of variables.

Take                , ,
yx zX Y Z

a b c
= = =   so that 

( )
( )

, ,

, ,

x y z
J abc

X Y Z

∂
= =

∂

∴ The required volume,

                            V dx dy dz J dX dY dZ= =∫ ∫ ∫ ∫ ∫ ∫

                                abc dX dYdZ= ∫ ∫ ∫ , taken throughout the sphere X2 + Y2 + Z2 = 1.

Change this new system (X, Y, Z) to spherical polar co-ordinates (r, θ, φ) by taking

          

sin cos ,
sin sin ,
cos

X r
Y r
Z r

= θ φ = θ φ 
= θ 

 so that 
( )
( )

2, ,
´ sin ,

, ,
X Y Z

J r
r

∂
= = θ

∂ θ φ

                            2 sinV abc J dr d d abc r dr d d= θ φ = θ θ φ∫ ∫ ∫ ∫ ∫ ∫
taken throughout the sphere r2 ≤ 1, i.e. 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π

On considering the symmetry,

                             
/2 1/2

2

0 0 0
8 sinV abc r dr d d

ππ   = ⋅ θ θ φ    ∫ ∫ ∫

                                

1/2 /2 3

0 0 0

8 sin
3
rabc d d

π π 
= θ θ φ 

 ∫ ∫

                                [ ]
/2 /2

00

8 cos
3

abc d
π π= − θ φ∫

                                
/2

0

8 1
3

abc d
π

= ⋅ φ∫
                                

/2

0

8 8 4
3 3 2 3

abc abc abc
π π= φ = = π
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Miscellaneous Problem

Example 59: Evaluate the surface integral ( )3 2 2 .
S

I x dy dz x y dzdx x zdx dy= + +∫ ∫

where S is the surface bounded by z = 0, z = b, x2 + y2 = a2.
OR

By transformation to a triple Integral, evaluate ( )3 2 2 ,
S

I x dy dz x y dzdx x zdx dy= + +∫ ∫   where

S is the surface bounded by z = 0, z = b, x2 + y2 = a2.

Solution: On making use of Green’s Theorem,

                             ( ) ( )3 3
2 2 2 2

0 0

a b a b

a a
I a y dzdy a y dzdy

− −
= − − − −∫ ∫ ∫ ∫

                                   ( )2 2 2 2 2 2

0

b a aa

a a a
x a x dzdx x a x dzdx

− − −
+ − − − −∫ ∫ ∫ ∫

        ( )
2 2 2 2

2 2 2 2

2 2 0
a y a a ya

a a y a a y
a y b dx dy dx dy

− −

− − − − − −
+ − −∫ ∫ ∫ ∫

Using Divergence Theorem,

                             ( )2 2 23
V

I x x x dx dy dz= + +∫ ∫ ∫

                                
2 2

2

0 0 0
4 5

a x ba
dz dy x dx

−  =     ∫ ∫ ∫

                                
2 2

2

0 0
4 5

a xa
bdy x dx

− 
=  

 ∫ ∫

                                2 2 2

0
20

a
b x a x dx= −∫

                                45
4

a b= π .

Note: As direct calculation of the integral may prove to be instructive. The evaluation of the integral can be
carried out by calculating the sum of the integrals evaluated over the projections of the surface S on the co-
ordinate planes. Thus, which upon evaluation is seen to check with the result already obtained. It should be
noted that the angles α, β, γ  are mode by the exterior normals in the +ve direction of the co-ordinate axes.
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ANSWERS

Assignmet 1

1.
2

4
 π 
   2.

4

3
a

3.
1
ab 6. 4

π

Assignment 2

1.
 
 + 

∫ ∫ 2 2
0 0

a x x dy dx
x y 3. ( ) ( )

−⋅ αα

α
+∫ ∫ ∫ ∫

2 2cossin

0 sin 0
, ,

a yya a

a a
f x y dxdy f x y dx dy

2. ( )
−

− −∫ ∫
2 2

2 20
,

a a x

a x
f x y dy dx 4. +∫ ∫ ∫0

( , ) ( , )
y

ma la
m
y ma
l

f x y dx dy f x y dxdy

Assignment 3

1.
24

3
a

2. ( )π −4 43
2

b a 3.
 π +  

2 3 4
4 3

a

Assignment 4

2.
1 sq. units

10

Assignment 5

1.
4

 units
8
aπ

2. ( )
3

2  units
12
a π +

3.
2  units
9
π

4.  units
4
π

Assignment 6

1. 1 2. ( )3 2 28 3 2 2
9

a bc ab ac+ +

3. 8π 4.
8 19log 2
9 9

−

Assignment 7

1.
1

6 lmn 2.
13

4 24
abc π − 
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Assignment 8

1. abc/6 2.
33

2
aπ

Assignment 9

1.
24

3
abπ

2. 22
3

aπ

3. 2π2a3 4. ( )3 1 1log 2 1
4 2 3
a  π + − 

 


